Mapping the Refractive Index of Dielectric Surfaces with Spherical Plasmonic Nanoantenna

Article Preview

Abstract:

Here we demonstrate successful mapping the variations of the refractive index of a smooth dielectric surface by detecting spectral response of a single spherical-shape Ag nanoparticle optically aligned with a supporting optical fiber axicon microlens. We propose and examine various excitation schemes of the plasmonic nanoantenna to provide efficient interaction of its dipolar and quadrupolar modes with the underlying sample surface and to optimize the mapping resolution and sensitivity. Supporting finite-difference time-domain calculations are undertaken to tailor the interaction of the plasmonic nanoantenna and the underlying dielectric substrate upon various excitation conditions demonstrating good agreement with our experimental findings and explaining the obtained results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

214-218

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Novotny, L. & Hecht, B. Principles of Nano-Optics, Cambridge University Press, Cambridge, (2006).

Google Scholar

[2] Albella, P., Moreno, F., Saiz, J. & Gonz´alez, F. Surface inspection by monitoring spectral shifts of localized plasmon resonances, Opt. Express 16, 12872–12879 (2008).

DOI: 10.1364/oe.16.012872

Google Scholar

[3] Huth, F. et al. Resonant antenna probes for tip-enhanced infrared near-field microscopy, Nano Lett. 13, 1065–1072 (2013).

DOI: 10.1021/nl304289g

Google Scholar

[4] Neumann, L., van 't Oever, J. & van Hulst, N. A resonant scanning dipole-antenna probe for enhanced nanoscale imaging, Nano Lett. 13, 5070–5074 (2013).

DOI: 10.1021/nl402178b

Google Scholar

[5] Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light-matter interaction at the nanometer scale, Nat. 418, 159–162 (2002).

DOI: 10.1038/nature00899

Google Scholar

[6] Michaelis, J., Hettich, C., Mlynek, J. & Sandoghdar, V. Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond nv center, Nat. 405, 325–328 (2000).

DOI: 10.1038/35012545

Google Scholar

[7] Beams, R. et al. Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond nv center, Nano Lett. 13, 3807–3811 (2013).

DOI: 10.1021/nl401791v

Google Scholar

[8] Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett. 96, 113002 (2006).

DOI: 10.1103/physrevlett.96.113002

Google Scholar

[9] Taubner, T., Keilmann, F. & Hillenbrand, R. Nanoscale-resolved subsurface imaging by scattering-type near-field optical microscopy, Opt. Express 13, 8893–8899 (2005).

DOI: 10.1364/opex.13.008893

Google Scholar

[10] Lee, T., Lee, E., Oh, S. & Hahn, J. W. Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture, Nanotechnol. 24, 145502 (2013).

DOI: 10.1088/0957-4484/24/14/145502

Google Scholar

[11] Kuchmizhak, A., Gurbatov, S., Nepomniaschii, A., Vitrik, O. & Kulchin, Y. High-quality fiber microaxicons fabricated by a modified chemical etching method for laser focusing and generation of bessel-like beams, Appl. Opt. 53, 937–943 (2014).

DOI: 10.1364/ao.53.000937

Google Scholar

[12] Gurbatov, S., Vitrik, O., Kulchin, Y. & Kuchmizhak, A. Mapping the refractive index with single plasmonic nanoantenna, Sci. Reports 8, 3861 (2018).

DOI: 10.1038/s41598-018-21395-w

Google Scholar