Manganese-Doped Zinc Sulfide Quantum Dots for Methane Detection in Aqueous Media

Article Preview

Abstract:

A simple aqueous based synthesis technique at room temperature was performed for preparation manganese-doped zinc sulfide quantum dots. Under 4 eV excitation quantum dots show photoluminescence bands at 2.11 and 3.1 eV corresponded to Mn2+ and intrinsic ZnS emission respectively. ZnS quantum dots were used as the luminescent sensing element for methane detection in aqueous media. The luminescent sensor response occurs due to photoinduced electron transfer from QDs to methane molecule resulting in QD luminescence quenching.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-235

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels, Science, 28 (1998) 2013–(2016).

DOI: 10.1126/science.281.5385.2013

Google Scholar

[2] I.L. Medintz, H. Tetsuo Uxeda, E.R. Goldman, H. Mattoussi. Quantum dot bioconjugates for imaging, labelling and sensing, Nature Material, 4 (2005) 435–446.

DOI: 10.1038/nmat1390

Google Scholar

[3] W.J. Chen. Nanoparticle fluorescence based technology for biological applications, Nanoscience and Nanotechnology, 8 (2008) 1019–1051.

Google Scholar

[4] X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility, Journal of the American Chemical Society, 119(30) (1997) 7019-7029.

DOI: 10.1021/ja970754m

Google Scholar

[5] A.R. Kortan, R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, L.E. Brus. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media, Journal of the American Chemical Society, 112(4) (1990).

DOI: 10.1021/ja00160a005

Google Scholar

[6] Murphy C. J. Peer reviewed: optical sensing with quantum dots, Analytical Chemistry, 74 (2002) 520A.

Google Scholar

[7] S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon. Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environmental Toxicology Chemistry, 27 (2008) 1825–1851.

DOI: 10.1897/08-090.1

Google Scholar

[8] B. Hemmateenejad, M. Shamsipur, F. Samari, H. R Rajabi. Study of the interaction between human serum albumin and Mn-doped ZnS quantum dots, Journal of the Iranian Chemical Society, 12(10) (2015) 1729-1738.

DOI: 10.1007/s13738-015-0647-3

Google Scholar

[9] S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, D.D. Sarma. Emission properties of manganese-doped ZnS nanocrystals, The Journal of Physical Chemistry B, 109(5) (2005) 1663-1668.

DOI: 10.1021/jp049976e

Google Scholar

[10] W.G. Becker, A.J. Bard, Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions, The Journal of Physical Chemistry, 87(24) (1983) 4888-4893.

DOI: 10.1021/j150642a026

Google Scholar

[11] U. Gelius, Electron Spectroscopy, American Elsevier, New York, (1972).

Google Scholar

[12] C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, Relative and absolute determination of fluorescence quantum yields of transparent samples, Nature protocols, 8(8) (2013) 1535.

DOI: 10.1038/nprot.2013.087

Google Scholar

[13] S. Joicy, R. Saravanan, D. Prabhu, N. Ponpandian, P. Thangadurai. Mn2+ ion influenced optical and photocatalytic behaviour of Mn–ZnS quantum dots prepared by a microwave assisted technique, RSC Advances, 4(84) (2014) 44592-44599.

DOI: 10.1039/c4ra08757g

Google Scholar

[14] J. Zheng, X. Yuan, M. Ikezawa, P. Jing, X. Liu, Z. Zheng, X. Kong, J. Zhao, Y. Masumoto, Efficient photoluminescence of Mn2+ ions in MnS/ZnS core/shell quantum dots, Journal of Physical Chemistry C, 113 (2009) 16969–16974.

DOI: 10.1021/jp906390y

Google Scholar

[15] B.B. Srivastava, S. Jana, N.S. Karan, S. Paria, N.R. Jana, D.D. Sarma, N. Pradhan. Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis, Journal of Physical Chemistry Letters, 1 (2010) 1454–1458.

DOI: 10.1021/jz100378w

Google Scholar

[16] D.T. Palumbo, J.J. Brown, Electronic States of Mn2+‐Activated Phosphors II. Orange‐to‐Red Emitting Phosphors, Journal of The Electrochemical Society, 118(7) (1971) 1159-1164.

DOI: 10.1149/1.2408272

Google Scholar

[17] X. Hao, Y. Wang, J. Zhou, Z. Cui, Y. Wang, Z. Zou, Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution, Applied Catalysis B: Environmental, 221 (2018) 302-311.

DOI: 10.1016/j.apcatb.2017.09.006

Google Scholar

[18] A.T. Rhys Williams, S.A. Winfield, J.N. Miller. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer, The Analyst, 108 (1983) 1067–1071.

DOI: 10.1039/an9830801067

Google Scholar

[19] C. Carrillo-Carrión, S. Cárdenas, B.M. Simonet, M. Valcárcel. Quantum dots luminescence enhancement due to illumination with UV/Vis light, Chemical Communications, 35 (2009) 5214-5226.

DOI: 10.1039/b904381k

Google Scholar

[20] S. Silvi, M. Baroncini, M. La Rosa, A. Credi, Interfacing Luminescent Quantum Dots with Functional Molecules for Optical Sensing Applications, in: Photoactive Semiconductor Nanocrystal Quantum Dots, Springer, Cham. 2017, pp.61-87.

DOI: 10.1007/978-3-319-51192-4_3

Google Scholar