[1]
M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels, Science, 28 (1998) 2013–(2016).
DOI: 10.1126/science.281.5385.2013
Google Scholar
[2]
I.L. Medintz, H. Tetsuo Uxeda, E.R. Goldman, H. Mattoussi. Quantum dot bioconjugates for imaging, labelling and sensing, Nature Material, 4 (2005) 435–446.
DOI: 10.1038/nmat1390
Google Scholar
[3]
W.J. Chen. Nanoparticle fluorescence based technology for biological applications, Nanoscience and Nanotechnology, 8 (2008) 1019–1051.
Google Scholar
[4]
X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility, Journal of the American Chemical Society, 119(30) (1997) 7019-7029.
DOI: 10.1021/ja970754m
Google Scholar
[5]
A.R. Kortan, R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, L.E. Brus. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media, Journal of the American Chemical Society, 112(4) (1990).
DOI: 10.1021/ja00160a005
Google Scholar
[6]
Murphy C. J. Peer reviewed: optical sensing with quantum dots, Analytical Chemistry, 74 (2002) 520A.
Google Scholar
[7]
S.J. Klaine, P.J.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon. Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environmental Toxicology Chemistry, 27 (2008) 1825–1851.
DOI: 10.1897/08-090.1
Google Scholar
[8]
B. Hemmateenejad, M. Shamsipur, F. Samari, H. R Rajabi. Study of the interaction between human serum albumin and Mn-doped ZnS quantum dots, Journal of the Iranian Chemical Society, 12(10) (2015) 1729-1738.
DOI: 10.1007/s13738-015-0647-3
Google Scholar
[9]
S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, D.D. Sarma. Emission properties of manganese-doped ZnS nanocrystals, The Journal of Physical Chemistry B, 109(5) (2005) 1663-1668.
DOI: 10.1021/jp049976e
Google Scholar
[10]
W.G. Becker, A.J. Bard, Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions, The Journal of Physical Chemistry, 87(24) (1983) 4888-4893.
DOI: 10.1021/j150642a026
Google Scholar
[11]
U. Gelius, Electron Spectroscopy, American Elsevier, New York, (1972).
Google Scholar
[12]
C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, Relative and absolute determination of fluorescence quantum yields of transparent samples, Nature protocols, 8(8) (2013) 1535.
DOI: 10.1038/nprot.2013.087
Google Scholar
[13]
S. Joicy, R. Saravanan, D. Prabhu, N. Ponpandian, P. Thangadurai. Mn2+ ion influenced optical and photocatalytic behaviour of Mn–ZnS quantum dots prepared by a microwave assisted technique, RSC Advances, 4(84) (2014) 44592-44599.
DOI: 10.1039/c4ra08757g
Google Scholar
[14]
J. Zheng, X. Yuan, M. Ikezawa, P. Jing, X. Liu, Z. Zheng, X. Kong, J. Zhao, Y. Masumoto, Efficient photoluminescence of Mn2+ ions in MnS/ZnS core/shell quantum dots, Journal of Physical Chemistry C, 113 (2009) 16969–16974.
DOI: 10.1021/jp906390y
Google Scholar
[15]
B.B. Srivastava, S. Jana, N.S. Karan, S. Paria, N.R. Jana, D.D. Sarma, N. Pradhan. Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis, Journal of Physical Chemistry Letters, 1 (2010) 1454–1458.
DOI: 10.1021/jz100378w
Google Scholar
[16]
D.T. Palumbo, J.J. Brown, Electronic States of Mn2+‐Activated Phosphors II. Orange‐to‐Red Emitting Phosphors, Journal of The Electrochemical Society, 118(7) (1971) 1159-1164.
DOI: 10.1149/1.2408272
Google Scholar
[17]
X. Hao, Y. Wang, J. Zhou, Z. Cui, Y. Wang, Z. Zou, Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution, Applied Catalysis B: Environmental, 221 (2018) 302-311.
DOI: 10.1016/j.apcatb.2017.09.006
Google Scholar
[18]
A.T. Rhys Williams, S.A. Winfield, J.N. Miller. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer, The Analyst, 108 (1983) 1067–1071.
DOI: 10.1039/an9830801067
Google Scholar
[19]
C. Carrillo-Carrión, S. Cárdenas, B.M. Simonet, M. Valcárcel. Quantum dots luminescence enhancement due to illumination with UV/Vis light, Chemical Communications, 35 (2009) 5214-5226.
DOI: 10.1039/b904381k
Google Scholar
[20]
S. Silvi, M. Baroncini, M. La Rosa, A. Credi, Interfacing Luminescent Quantum Dots with Functional Molecules for Optical Sensing Applications, in: Photoactive Semiconductor Nanocrystal Quantum Dots, Springer, Cham. 2017, pp.61-87.
DOI: 10.1007/978-3-319-51192-4_3
Google Scholar