SERS of a-C Thin Film on Ag, Au, Ag0.52-Au0.48 Alloy Nanoparticle Arrays with Normal Particles Size Distribution Formed by Vacuum Thermal Evaporation

Article Preview

Abstract:

This paper presents the results of experimental studies of arrays of Ag0.52Au0.48 alloy nanoparticles. Arrays were formed by vacuum-thermal evaporation on an unheated substrate and subsequent low-temperature vacuum annealing. The TEM images of the obtained nanoparticle arrays and corresponding histograms of particle size distribution are shown. The transmission spectra of these arrays showing the displacement of the plasma frequency as a function of the mean particle size are obtained. Spectra of Raman scattering from a thin film of amorphous carbon in presence of AgAu particles are obtained, and a comparative analysis of Raman scattering amplification factors for pure Ag, pure Au and Ag0.52Au0.48 alloy nanoparticles is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-255

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.A. Dieringer, K.L. Wustholz, D.J. Masiello, J.P. Camden, S.L. Kleinman, G.C. Schatz, R.P. Van Duyne, Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule, J. Am. Chem. Soc. 131 (2009) 849-854.

DOI: 10.1021/ja8080154

Google Scholar

[2] S. Suzuki, M. Yoshimura, Chemical stability of graphene coated silver substrates for surface-enhanced Raman scattering, Sci. Rep. 7 (2017) 14851.

DOI: 10.1038/s41598-017-14782-2

Google Scholar

[3] K.-Q. Lin, J. Yi, S. Hu, B.-J. Liu, J.-Y. Liu, X. Wang, B. Ren, Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy, J. Phys. Chem. C 120 (2016) 20806.

DOI: 10.1021/acs.jpcc.6b02098

Google Scholar

[4] G.K. Podagatlapalli, S. Hamad, S.V. Rao, Trace-level detection of secondary explosives using hybrid silver-gold nanoparticles and nanostructures achieved with femtosecond laser ablation, J. Phys. Chem. C 119 (2015) 16972-16983.

DOI: 10.1021/acs.jpcc.5b03958

Google Scholar

[5] D.G. Gromov, I.V. Mel'nikov, A.I. Savitskii, A.Yu. Trifonov, E.N. Redichev, V.A. Astapenko, Optical spectroscopy of arrays of Ag–Au nanoparticles obtained by vacuum-thermal evaporation, Tech Phys Lett. 43 (2017) 235-237.

DOI: 10.1134/s1063785017030087

Google Scholar

[6] D.G. Gromov, L.M. Pavlova, A.I. Savitskii, A.Yu. Trifonov, Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evaporation under vacuum, Phys. Solid State 57 (2015) 173-180.

DOI: 10.1134/s1063783415010126

Google Scholar

[7] D.G. Gromov, L.M. Pavlova, A.I. Savitskiy, A.Yu. Trifonov, Nucleation and growth of Ag nanoparticles on amorphous carbon surface from vapor phase formed by vacuum evaporation, Appl. Phys A 57 (2015) 173-180.

DOI: 10.1007/s00339-014-8834-0

Google Scholar

[8] N. Felidj, J. Aubard, G. Levi, J.R. Krenn, A. Hohenau, G. Schider, A. Leitner, F.R. Aussenegg, Revisiting surface-enhanced Raman scattering on realistic lithographic gold nanostripes, Appl. Phys. Lett. 82 (2003) 3095-3097.

DOI: 10.1063/1.1571979

Google Scholar

[9] N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, M.L. de la Chapelle, Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength, Appl. Phys. Lett. 97 (2010).

DOI: 10.1063/1.3462068

Google Scholar

[10] J. Bardeen, J. Appl. Phys. 11 (1939) 88.

Google Scholar