Hexagonal Phytolithes from Red Alga Tichocarpus crinitus

Article Preview

Abstract:

In current work unique hexagonal microparticles of silicon oxide (phytolite), isolated from the red algae Tichocarpus crinitus, which grows in the Sea of Japan described. The structures of poytolites are characterized by the methods of optical microscopy and scanning electron microscopy. The role of these formations in plant life and the mechanism of their synthesis remains unclear.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

256-261

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Begum G., Goodwin W.B., deGlee B.M., Sandhage K.H., Kröger N. Compartmentalisation of Enzymes for Cascade Reactions through Biomimetic Layer-by-Layer Mineralization // J. Mater. Chem. B 3 (2015) 5232-5240.

DOI: 10.1039/c5tb00333d

Google Scholar

[2] Delalat B., Sheppard V., Rasi Ghaemi S., Rao S., Prestidge C., McPhee G., Rogers M.-L., Donoghue J., Pillay V., Johns T., Kröger N., Voelcker N. Targeted drug delivery using genetically engineered diatom biosilica // Nat. Commun. 6 (2015) 8791.

DOI: 10.1038/ncomms9791

Google Scholar

[3] Golokhvast, K.S., Seryodkin, I.V., Chaika, V.V., Zakharenko, A.M., Pamirsky, I.E. Phytoliths in Taxonomy of Phylogenetic Domains of Plants // BioMed Research International 2014 (2014) 648326.

DOI: 10.1155/2014/648326

Google Scholar

[4] Golokhvast K.S., Seryodkin I.V., Bulakh E.M., Chaika V.V., Zakharenko A.M., Kholodov A.S., Pamirsky I.E., G. Chung Mycoliths morphotypes and biosilification proteins in wood-destroying and pileate fungi // Botanica Pacifica 7 (2018) 1.

DOI: 10.17581/bp.2018.07102

Google Scholar

[5] Kotzsch A., Gröger P., Pawolski D., Bomans P.H.H., Sommerdijk N.A.J.M., Schlierf M., Kröger N. Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization // BMC Biol. 15 (2017) 65.

DOI: 10.1186/s12915-017-0400-8

Google Scholar

[6] Madella, M., Alexandre, A., Ball, T. International code for phytolith nomenclature 1.0. // Annals of Botany 96 (2) (2005) 253-260.

DOI: 10.1093/aob/mci172

Google Scholar

[7] Muller W.E.G., Schreder H.C., Burghard Z., Pisignano D., Wang X. Silicateins - A novel paradigm in bioinorganic chemistry: Enzymatic synthesis of inorganic polymeric silica // Chemistry - A European Journal 19(19) (2013) 5790-5804.

DOI: 10.1002/chem.201204412

Google Scholar

[8] Pamirsky I.E., Golokhvast K.S. Silaffins of diatoms: from applied biotechnology to biomedicine // Marine Drugs 11 (2013) 3155-3167.

DOI: 10.3390/md11093155

Google Scholar

[9] Piperno, D.R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. AltaMira Press, Lanham, Md, USA. (2006).

Google Scholar

[10] Raven J.A., Knoll A.H. Non-skeletal biomineralization by eukaryotes: matters of moment and gravity // Geomicrobiology Journal 27(6&7) (2010) 572-584.

DOI: 10.1080/01490451003702990

Google Scholar

[11] Schoeppler V., Reich E., Vacelet J., Rosenthal M., Pacureanu A., Rack A., Zaslansky P., Zolotoyabko E., Zlotnikov I. Shaping highly regular glass architectures: A lesson from nature // Sci. Adv. 3(10) (2017) (2047).

DOI: 10.1126/sciadv.aao2047

Google Scholar

[12] Skinner H.C.W. Biominerals // Mineralogical Magazine 69(5) (2005) 621-641.

Google Scholar