Protective Coatings Formed by PEO and Fluorine-Containing Compound

Article Preview

Abstract:

Composite coatings have been obtained by plasma electrolytic oxidation method and subsequent treatment with fluorine-containing compound: suspension of superdispersed polytetrafluoroethylene. A method of formation of the protective coating by dipping into the suspension of organofluorine compound with subsequent heat treatment has been developed. The surface morphology of samples, their electrochemical and tribological properties, as well as wettability have been studied. Formed composite coatings reduce the corrosion current density and wear more than two orders of magnitude in comparison with the base PEO-coating. Additionally, composite layers have hydrophobic properties: for polymer-containing coatings the value of contact angle attains to 143±2°.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

343-348

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.V. Lamaka, G. Knörnschild, D.V. Snihirova, M.G. Taryba, M.L. Zheludkevich, M.G.S. Ferreira, Complex anticorrosion coating for ZK30 magnesium alloy, Electrochim. Acta 55 (2009) 131-141.

DOI: 10.1016/j.electacta.2009.08.018

Google Scholar

[2] R.O. Hussein, D.O. Northwood, X. Nie, The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys, Surf. Coat. Technol. 237 (2013) 357-368.

DOI: 10.1016/j.surfcoat.2013.09.021

Google Scholar

[3] S.H. Cui, J.M. Han, Y.P. Du, W.J. Li, Corrosion resistance and wear resistance of plasma electrolytic oxidation coatings on metal matrix composites, Surf. Coat. Technol. 201 (2007) 5306-5309.

DOI: 10.1016/j.surfcoat.2006.07.126

Google Scholar

[4] M. Aliofkhazraei, A. Sabour Rouhaghdam, M. Laleh, A. Shanaghi, Enhancement of corrosion protection of micro‐arc oxidation by applying nanostructured TiO2 thin film via the sol‐gel, method, Anti-Corros. Methods Mater. 57 (2010) 75-82.

DOI: 10.1108/00035591011028041

Google Scholar

[5] L.M. Chang, L.F. Tian, W. Liu, X.Y. Duan, Formation of dicalcium phosphate dihydrate on magnesium alloy by micro-arc oxidation coupled with hydrothermal treatment, Corros. Sci. 72 (2013) 118-124.

DOI: 10.1016/j.corsci.2013.03.017

Google Scholar

[6] M. Boinet, S. Verdier, S. Maximovitch, F. Dalard, Plasma electrolytic oxidation of AM60 magnesium alloy: Monitoring by acoustic emission technique. Electrochemical properties of coatings, Surf. Coat. Technol. 199 (2005) 141-149.

DOI: 10.1016/j.surfcoat.2004.10.145

Google Scholar

[7] L. Wen, Y.M. Wang, Y. Zhou, L.X. Guo, J.H. Ouyang, Microstructure and corrosion resistance of modified 2024 Al alloy using surface mechanical attrition treatment combined with microarc oxidation process, Corros. Sci. 53 (2011) 473-480.

DOI: 10.1016/j.corsci.2010.09.061

Google Scholar

[8] K.M. Lee, Y.G. Ko, D.H. Shin, Microstructural characteristics of oxide layers formed on Mg–9 wt%Al–1 wt%Zn alloy via two-step plasma electrolytic oxidation, J. Alloys Compd. 615 (2014) S418-S422.

DOI: 10.1016/j.jallcom.2014.01.097

Google Scholar

[9] S.V. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, V.S. Egorkin, M.V. Sidorova, A.S. Gnedenkov, Composite polymer-containing protective coatings on magnesium alloy MA8, Corros. Sci. 85 (2014) 52-59.

DOI: 10.1016/j.corsci.2014.03.035

Google Scholar

[10] F. Henry, F. Renaux, S. Coppée, R. Lazzaroni, N. Vandencasteele, F. Reniers, R. Snyders, Synthesis of superhydrophobic PTFE-like thin films by self-nanostructuration in a hybrid plasma process, Surf. Sci. 606 (2012) 1825-1829.

DOI: 10.1016/j.susc.2012.07.025

Google Scholar

[11] B.E.L. Fouhaili, C. Dietlin, X. Allonas, A. Ibrahim, C. Delaite, C. Croutxe-Barghorn, Study and optimization of water repellence stability in fluoroacrylate photopolymers, Prog. Org. Coat. 77 (2014) 1030-1036.

DOI: 10.1016/j.porgcoat.2014.02.012

Google Scholar

[12] S.V. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, K.V. Nadaraia, D.P. Kiryukhin, V.M. Buznik, G.A. Kichigina, P.P. Kushch, Composite coatings formed by plasma electrolytic oxidation and using telomeric tetrafluoroethylene solutions, Russ. J. Inorg. Chem. 60 (2015).

DOI: 10.1134/s0036023615080094

Google Scholar

[13] S.V. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, K.V. Nadaraia, A.S. Gnedenkov, V.M. Bouznik, Composite fluoropolymer coatings on the MA8 magnesium alloy surface, Corros. Sci. 111 (2016) 175-185.

DOI: 10.1016/j.corsci.2016.04.052

Google Scholar

[14] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, I.E. Vyalyi, D.V. Mashtalyar, K.V. Nadaraia, D.K. Ryabov, V.M. Buznik, Formation and properties of composite coatings on aluminum alloys, Russ. J. Inorg. Chem. 62 (2017) 1–11.

DOI: 10.1134/s0036023617010065

Google Scholar

[15] K.V. Nadaraia, D.V. Mashtalyar, S.V. Gnedenkov, S.L. Sinebryukhov, Formation of composite coatings using fluoropolymer materials, Solid State Phenom. 245 (2016) 103-108.

DOI: 10.4028/www.scientific.net/ssp.245.103

Google Scholar

[16] D.V. Mashtalyar, K.V. Nadaraia, S.L. Sinebryukhov, S.V. Gnedenkov, Protective composite coatings formed on Mg alloy surface by PEO using organofluorine materials, J. Mater. Sci. Technol. 33 (2017) 661-667.

DOI: 10.1016/j.jmst.2016.09.006

Google Scholar

[17] L.N. Ignatieva., O.M. Gorbenko, V.G. Kuryavyi, N.N. Savchenko, A.D. Pavlov, D.V. Mashtalyar, V.M. Bouznik, Characteristics of the structure and properties of low-temperature fractions recovered from the powder ultradispersed polytetrafluoroethylene by sublimation, J. Fluorine Chem. 156 (2013).

DOI: 10.1016/j.jfluchem.2013.06.012

Google Scholar