[1]
C. Y. Wang Free convection between vertical plates with periodic heat input. ASME J Heat Trans 110 (1988) 508–11.
DOI: 10.1115/1.3250516
Google Scholar
[2]
B K. Jha, and A. O Ajibade, Free convective flow of heat generating/absorbing fluid between vertical porous plates with periodic heat input, International Communications in Heat and Mass Transfer, 36 (2009) 624–631.
DOI: 10.1016/j.icheatmasstransfer.2009.03.003
Google Scholar
[3]
S. O. Adesanya, Free convective flow of heat generating fluid through a porous vertical channel with velocity slip and temperature jump, Ain Shams Eng J (2015), vol. 6(3) pp.1045-1052.
DOI: 10.1016/j.asej.2014.12.008
Google Scholar
[4]
B K. Jha, and A. O Ajibade, Free convective flow between vertical porous plates with periodic heat input, ZAMM· Z.A.M.M., (2010) 1 – 9, DOI10.1002/zamm.200900268.
DOI: 10.1002/zamm.200900268
Google Scholar
[5]
B K. Jha, and A. O Ajibade, Effect of viscous dissipation on Natural convection flow between vertical parallel plates with time-periodic boundary conditions, Commun. Nonlinear Sci Numerical Simulat 17 (2012) 1576 -1587.
DOI: 10.1016/j.cnsns.2011.09.020
Google Scholar
[6]
S.O. Adesanya, E. O. Oluwadare, J.A. Falade, O.D. Makinde, Hydromagnetic natural convection flow between vertical parallel plates with time-periodic boundary conditions, Journal of Magnetism and Magnetic Materials, http://dx.doi.org/10.1016/ j.jmmm.2015.07.096.
DOI: 10.1016/j.jmmm.2015.07.096
Google Scholar
[7]
M. Subhas Abel and N. Mahesha, Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Applied Mathematical Modelling 32 (2008) 1965–(1983).
DOI: 10.1016/j.apm.2007.06.038
Google Scholar
[8]
W. Ibrahim and B. Shanker, Unsteady MHD boundary-layer flow and heat transfer due to stretching sheet in the presence of heat source or sink, Computers & Fluids 70 (2012) 21–28.
DOI: 10.1016/j.compfluid.2012.08.019
Google Scholar
[9]
O. Anwar Bég, Lik Sim, J. Zueco, R. Bhargava, Numerical study of magnetohydrodynamic viscous plasma flow in rotating porous media with Hall currents and inclined magnetic field influence, Commun Nonlinear Sci Numer Simulat 15 (2010) 345–359.
DOI: 10.1016/j.cnsns.2009.04.008
Google Scholar
[10]
O. Anwar Bég, M.J. Uddin, M.M. Rashidi, N. Kavyani, Double-diffusive radiative magnetic mixed convective slip flow with Biot and Richardson number effects, J. Eng. Thermophy. 23 (2014) 79–97.
DOI: 10.1134/s1810232814020015
Google Scholar
[11]
T. Hayat, A. Shafiq, A. Alsaedi, M. Awais, MHD axisymmetric flow of third grade fluid between stretching sheets with heat transfer, Computers & Fluids Volume 86, 5 2013, Pages 103–108.
DOI: 10.1016/j.compfluid.2013.07.003
Google Scholar
[12]
T. Hayat, S.A. Shehzad, S. Asghar, MHD flow, thixotropic fluid thermal radiation, variable thermal conductivity and thermal radiation, Walailak J. Sci. Technol. 10 (1) (2013) 29–42.
Google Scholar
[13]
T. Hayat, R. Ellahi, F.M. Mahomed, The analytical solution for magnetohydrodynamic flow of a of third order fluid in porous medium, Zeitschrift Fur Naturforschung A 64 (a) (2009 531–539.
DOI: 10.1515/zna-2009-9-1001
Google Scholar
[14]
R. Ellahi, A. Riaz, Analytical solution for MHD flow in a third grade fluid with variable viscosity, Math. Comput. Model. 5 (2010) 1783–1793.
DOI: 10.1016/j.mcm.2010.07.005
Google Scholar
[15]
T. Hayat, A.H. Kara, Couette flow of a third-grade fluid with variable magnetic field, Math. Comput. Model. 43 (2006) 132 137.
Google Scholar
[16]
A. Shafiq, M. Nawaz, T. Hayat, A. Alsaedi Magnetohydrodynamic axisymmetric flow of a third-grade fluid between two porous disks, Brazilian J. Chem. Eng. 3 (2013) 599–609.
DOI: 10.1590/s0104-66322013000300017
Google Scholar
[17]
Sheikholeslami, M.; Ganji, D. D.; Rashidi, M. M., Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model, Journal of Magnetism and Magnetic Materials ,16(2016)164-173.
DOI: 10.1016/j.jmmm.2016.05.026
Google Scholar
[18]
M. Sheikholeslami, M.M. Rashidi, T. Hayat, D.D. Ganji, Free convection of magnetic nanofluid considering MFD viscosity effect, Journal of Molecular Liquids 218 (2016) 393-399.
DOI: 10.1016/j.molliq.2016.02.093
Google Scholar
[19]
M Sheikholeslami,, Davood Domiri Ganji, Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method, Physica A 417 (2015) 273-286.
DOI: 10.1016/j.physa.2014.09.053
Google Scholar
[20]
M. Sheikholeslami, ; Domiri Ganji, Davood; Younus Javed, M.; Ellahi, R., Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model, Journal of Magnetism and Magnetic Materials 374 (2015).
DOI: 10.1016/j.jmmm.2014.08.021
Google Scholar
[21]
M. Sheikholeslami, Houman B. Rokni, Nanofluid two phase model analysis in existence of induced magnetic field, International Journal of Heat and Mass Transfer 107 (2017) 288-299.
DOI: 10.1016/j.ijheatmasstransfer.2016.10.130
Google Scholar
[22]
T. Hayat, M. Qasim, S. Mesloub, MHD flow And Heat Transfer Over Permeable Stretching Sheet With Slip Conditions, International Journal For Numerical Methods In Fluids, 66, 963–975, (2011).
DOI: 10.1002/fld.2294
Google Scholar
[23]
M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, P. Rana, Soheil Soleimani, Magnetohydrodynamic free convection of Al2O3–water nanofluid considering Thermophoresis and Brownian motion effects, Computers & Flu ids, 94, 2014, Pages 147–160.
DOI: 10.1016/j.compfluid.2014.01.036
Google Scholar
[24]
G. Adomian and R. Rach, Transformation of series, Applied Mathematics Letters, vol. 4, no. 4, p.69–71, (1991).
Google Scholar
[25]
R. Rach, G. Adomian, and R. E. Meyers, A modified decomposition, Computers and Mathematics with Applications, vol. 23, no. 1, p.17–23, (1992).
DOI: 10.1016/0898-1221(92)90076-t
Google Scholar
[26]
G. Adomian, Modification of the decomposition approach to the heat equation, Journal of Mathematical Analysis and Applications, vol. 124, no. 1, p.290–291, (1987).
DOI: 10.1016/0022-247x(87)90040-0
Google Scholar
[27]
G. Adomian, A new approach to the heat equation—an application of the decomposition method, Journal of Mathematical Analysis and Applications, vol. 113, no. 1, p.202–209, (1986).
DOI: 10.1016/0022-247x(86)90344-6
Google Scholar
[28]
R. Rach, A convenient computational form for the Adomian polynomials, Journal of Mathematical Analysis and Applications, vol. 102, no. 2, p.415–419, (1984).
DOI: 10.1016/0022-247x(84)90181-1
Google Scholar
[29]
S. O. Adesanya, Linear Stability Analysis of a plane-Poiseuille hydromagnetic Flow Using Adomian Decomposition Method, U.P.B. Sci. Bull., Series A, 75, 2013, 99-106.
Google Scholar
[30]
S. O. Adesanya and O. D. Makinde, Thermodynamic analysis for a third-grade fluid through a vertical channel with internal heat generation, Journal of Hydrodynamics, 2015,27(2):264-272.
DOI: 10.1016/s1001-6058(15)60481-4
Google Scholar
[31]
S. O. Adesanya and O. D. Makinde, Entropy generation in couple stress fluid flow through porous channel with fluid slippage, Int. J. Exergy, Vol. 15, No. 3, (2014).
DOI: 10.1504/ijex.2014.065711
Google Scholar
[32]
S. O. Adesanya and O. D. Makinde, Effects of couple stresses on entropy generation rate in a porous channel with convective heating, Comp. Appl. Math. (2015) 34:293–307.
DOI: 10.1007/s40314-014-0117-z
Google Scholar
[33]
M. Sheikholeslami, D.D. Ganji, H.R. Ashorynejad, Investigation of squeezing unsteady nanofluid flow using ADM, Powder Technology 239 (2013) 259-265.
DOI: 10.1016/j.powtec.2013.02.006
Google Scholar
[34]
pages 529-553.
Google Scholar
[35]
Srinivas Jangili and O. Anwar Bég , Homotopy study of entropy generation in magnetized micropolar flow in a vertical parallel plate channel with buoyancy effect, Heat Transfer Research.
DOI: 10.1615/heattransres.2018018305
Google Scholar
[36]
J. Srinivas, J.V. Ramana Murthy, Ali J Chamkha, (2016).
Google Scholar