[1]
M. Lomascolo, G. Colangelo, M. Milanese and A.D. Risi, Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results, Renewable and Sustainable Energy Reviews, 43 (2015) 1182-1198.
DOI: 10.1016/j.rser.2014.11.086
Google Scholar
[2]
F. Mabood, W.A. Khan and A.I.M. Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study, J. of Magnetism and Magnetic Materials, 374(2015) 569-576.
DOI: 10.1016/j.jmmm.2014.09.013
Google Scholar
[3]
E.E. Bajestan, M.G. Moghadam, H.Niazmand, W. Daungthongsuk and S. Wongwises, Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers, International Journal of Heat and Mass Transfer, 92 (2016).
DOI: 10.1016/j.ijheatmasstransfer.2015.08.107
Google Scholar
[4]
M. Sheikholeslami and S. A. Shehzad, Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition, International Journal of Heat and Mass Transfer, 106 (2017) 1261-1269.
DOI: 10.1016/j.ijheatmasstransfer.2016.10.107
Google Scholar
[5]
B.C. Prasannakumara, B.J. Gireesha, M.R. Krishnamurthy and K.G. Kumar, MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet, Informatics in Medicine Unlocked, 9(2017)123-132.
DOI: 10.1016/j.imu.2017.07.006
Google Scholar
[6]
K.G. Kumar, B.J. Gireesha, S. Manjunatha and N.G. Rudraswamy, Effect of nonlinear thermal radiation on double-diffusive mixed convection boundary layer flow of viscoelastic nanofluid over a stretching sheet, International J. of Mech. and Mat. Engg., 12 (1) (2017).
DOI: 10.1186/s40712-017-0083-5
Google Scholar
[7]
K.G. Kumar, G.K. Ramesh, B.J. Gireesha and R.S.R. Gorla, Characteristics of Joule heating and viscous dissipation on three-dimensional flow of Oldroyd B nanofluid with thermal radiation, Alexandria Engg J., https://doi.org/10.1016/j.aej.2017.06.006, (2017).
DOI: 10.1016/j.aej.2017.06.006
Google Scholar
[8]
KG Kumar, BJ Gireesha, GK Ramesh, NG Rudraswamy, Double-diffusive free convective flow of Maxwell nanofluid past a stretching sheet with nonlinear thermal radiation, Journal of Nanofluids 7 (3), (2017) 499-508.
DOI: 10.1166/jon.2018.1481
Google Scholar
[9]
N.G. Rudraswamy, S.A. Shehzad, K.G. Kumar and B.J. Gireesha, Numerical analysis of MHD three-dimensional Carreau nanoliquid flow over bidirectionally moving surface, J. of the Brazilian Society of Mech. Sci. and Engg., 39(12) (2017) 5037-5047.
DOI: 10.1007/s40430-017-0897-3
Google Scholar
[10]
J. Amin, A. Sadegh J. Kourosh, A.A.A. Arani and J. Reza, Al/oil nanofluids inside annular tube: an experimental study on convective heat transfer and pressure drop, Heat Mass Transfer, 54 (2018) 1053–1067.
DOI: 10.1007/s00231-017-2199-9
Google Scholar
[11]
S. Chari and K. Clement, Convective mass and heat transfer enhancement of nanofluid streams in bifurcating microchannels, International J. of Heat and Mass Transfer, 125 (2018) 1212-1229.
DOI: 10.1016/j.ijheatmasstransfer.2018.04.075
Google Scholar
[12]
M. Sheikholeslami, T. Hayat and A. Alsaedi, Numerical study for external magnetic source influence on water based nanofluid convective heat transfer, International J. of Heat and Mass Transfer, 106 (2017) 745-755.
DOI: 10.1016/j.ijheatmasstransfer.2016.09.077
Google Scholar
[13]
Sekrani, Ghofrane, S. Poncet, and P. Proulx, Modeling of convective turbulent heat transfer of water-based Al2O3 nanofluids in an uniformly heated pipe, Che Engg Science, 176 (2018) 205-219.
DOI: 10.1016/j.ces.2017.10.044
Google Scholar
[14]
B.J. Gireesha, G.K. Ramesh, K.G. Kumar and B.C. Prasannakumar, Nonlinear convective heat and mass transfer of Oldroyd-B nanofluid over a stretching sheet in the presence of uniform heat source/sink, Results in Physics, 9 (2018) 1555-1563.
DOI: 10.1016/j.rinp.2018.04.006
Google Scholar
[15]
K.G. Kumar, G.K. Ramesh and B.J. Gireesha, Impact of thermal radiation on double-diffusive natural convection flow of MHD casson fluid past a stretching vertical surface, Frontiers in Heat and Mass Transfer (FHMT) 9 (1) (2017).
Google Scholar
[16]
H. Kai-Long, Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects, Appl. Thermal Engg, 112 (2017) 1281-1288.
DOI: 10.1016/j.applthermaleng.2016.08.208
Google Scholar
[17]
E. Charrier, Elisabeth, K. Pogoda, G. Wells and A.P. Janmey, Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature communications, 9 (2018) 449.
DOI: 10.1038/s41467-018-02906-9
Google Scholar
[18]
Alford, G. Mark, L. Bovard, M. Hanauske, L. Rezzolla and K. Schwenzer, On the importance of viscous dissipation and heat conduction in binary neutron-star mergers, arXiv preprint arXiv:1707.09475 (2017).
DOI: 10.1103/physrevlett.120.041101
Google Scholar
[19]
B. Prabhakar, R. Ul Haq, S. Bandari and Q. M. Al-Mdallal, Mixed convection flow of thermally stratified MHD nanofluid over an exponentially stretching surface with viscous dissipation effect, J. of the Taiwan Institute of Chemical Engineers, 71 (2017).
DOI: 10.1016/j.jtice.2016.12.034
Google Scholar
[20]
K.G. Kumar, B.J. Gireesha, B.C. Prasannakumara and G.K. Ramesh, Phenomenon of radiation and viscous dissipation on Casson nanoliquid flow past a moving melting surface, Diffusion Foundations 11, (2017) 33-42.
DOI: 10.4028/www.scientific.net/df.11.33
Google Scholar
[21]
N.G. Rudraswamy, K.G. Kumar, B.J. Gireesha and R.S.R. Gorla, Combined effect of joule heating and viscous dissipation on MHD three dimensional flow of a jeffrey nanofluid, J. of Nanofluids, 6 (2) (2017) 300-310.
DOI: 10.1166/jon.2017.1329
Google Scholar