Unsteady Hydromagnetic Boundary Layer Flow of a Nanofluid over a Stretching Sheet: Using Cattaneo-Christov Heat Flux Model

Article Preview

Abstract:

The present investigation has put a focus on the hydromagnetic boundary layer unsteady flow of a nanofluid over a stretching sheet. A new heat flux model named Cattaneo-Christov is applied as the substitution of classical Fourier’s law. Buongiorno’s model is incorporated. The coupled non-linear transformed equations are solved numerically by using shooting technique with MATLAB bvp4c package. The obtained results are presented and discussed through graphs and tables in detail. Our results reveal that the unsteady parameter reduces all the three boundary layer thickness. The thermal relaxation parameter exhibits a non-conducting nature that makes the decline in fluid temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-76

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.M.A. Elbashbeshy and M.A.A. Bazid, Heat transfer over an unsteady stretching surface, Heat and mass transfer, 41 (2004) 1-4.

DOI: 10.1007/s00231-004-0520-x

Google Scholar

[2] I. Pop., and T.Yen. Na, Unsteady flow past a stretching sheet, Mechanics Research Communications, 23 (1996) 413-422.

DOI: 10.1016/0093-6413(96)00040-7

Google Scholar

[3] C.Y. Wang., C.C. Chang, M. Miklavcic and G. Du, Impulsive stretching of a surface in a viscous fluid, SIAM Journal of Applied Mathematics, 57 (1997) 1-14.

DOI: 10.1137/s0036139995282050

Google Scholar

[4] H.I., Andersson, J.B., Aarseth and B.S. Dandapat, Heat transfer in a liquid film on an unsteady stretching surface, International Journal of heat and mass transfer, 43 (2000) 69-74.

DOI: 10.1016/s0017-9310(99)00123-4

Google Scholar

[5] S. Sharidan, T. Mahmood and I. Pop, Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet, International journal of applied mechanical engineering, 11 (2006) 647-654.

Google Scholar

[6] A. Ishak, R. Naza and I. Pop, Boundary layer flow and heat transfer over an unsteady stretching vertical surface, Meccanica, 44 (2009) 369-75.

DOI: 10.1007/s11012-008-9176-9

Google Scholar

[7] S. Mukhopadhyay., Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium, International journal of heat and mass transfer, 52 (2009) 3261-3265.

DOI: 10.1016/j.ijheatmasstransfer.2008.12.029

Google Scholar

[8] A. Ishak, Unsteady MHD flow and heat transfer over a stretching plate, Journal of applied science, 18 (2010) 2127-3110.

DOI: 10.3923/jas.2010.2127.2131

Google Scholar

[9] W. Ibrahim and B. Shanker, Unsteady MHD boundary-layer flow and heat transfer due to stretching sheet in the presence of heat source or sink, Computers and Fluids, 70 (2012) 21-28.

DOI: 10.1016/j.compfluid.2012.08.019

Google Scholar

[10] K. Bhattacharyya., S. Mukhopadhyay and G.C. Layek., Unsteady MHD boundary layer flow with diffusion and first-order chemical reaction over a permeable stretching sheet with suction or blowing, Chemical engineering communications, 200 (2013).

DOI: 10.1080/00986445.2012.712577

Google Scholar

[11] D. Hunegnaw and N. Kishan, Unsteady MHD heat and mass transfer flow over stretching sheet in porous medium with variable properties considering viscous dissipation and chemical reaction, American chemical science journal, 4 (2014) 901-917.

DOI: 10.9734/acsj/2014/11972

Google Scholar

[12] S.A. Shehzad., M. Waqas, A. Alsaedi and T. Hayat, Flow and heat transfer over an unsteady stretching sheet in a micropolar fluid with convective boundary condition, Journal of applied fluid mechanics, 9 (2016) 1437-1445.

DOI: 10.18869/acadpub.jafm.68.228.24172

Google Scholar

[13] K. Das, P. Ranjan Duari and P. Kumar Kundu, Nanofluid flow over an unsteady stretching surface in presence of thermal radiation, Alexandria engineering journal, 53 (2014)737-745.

DOI: 10.1016/j.aej.2014.05.002

Google Scholar

[14] B.K. Mahatha, R. Nandkeolyar, G.K. Mahto and P. Sibanda, Dissipative effects in hydromagnetic boundary layer nanofluid flow past a stretching sheet with Newtonian heating, Journal of applied fluid mechanics, 9 (2016) 1977-(1989).

DOI: 10.18869/acadpub.jafm.68.235.24451

Google Scholar

[15] A.J. Chamkha, A.M. Rashad and E. AlMeshaiei, Melting effect on unsteady hydromagnetic flow of a nanofluid past a stretching sheet, International journal of chemical reactor engineering, 9 (2011) A113.

DOI: 10.2202/1542-6580.2613

Google Scholar

[16] Md. Shakhaoath Khan, M. Ferdows, Md. Mahmud Alam and A.A. Afify, MHD boundary layer flow and heat transfer characteristics of a nanofluid over a stretching sheet, Acta universitatis sapientiae, Mathematica, 9 (2017) 140–161.

DOI: 10.1515/ausm-2017-0009

Google Scholar

[17] F.G. Awad., Sami M.S. Ahamed, P. Sibanda and M. Khumalo, The effect of thermophoresis on unsteady oldroyd-B nanofluid flow over stretching surface, PLoS ONE, 10 (2015): e0135914.

DOI: 10.1371/journal.pone.0135914

Google Scholar

[18] M. Khan and W. Azeem Khan, Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet, AIP advances, 5 (2015) 1-11.

DOI: 10.1063/1.4935043

Google Scholar

[19] O.D. Makinde and A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, International journal of thermal sciences, 50 (2011) 1326-1332.

DOI: 10.1016/j.ijthermalsci.2011.02.019

Google Scholar

[20] O.D. Makinde., W.A. Khan and Z.H. Khan, Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, International journal heat and mass transfer, 62 (2013) 526-533.

DOI: 10.1016/j.ijheatmasstransfer.2013.03.049

Google Scholar

[21] T. Hayat, M. Imtiaz and A. Alsaedi, Magnetohydrodynamic stagnation point flow of a Jeffrey nanofluid with Newtonian heating, Journal of aerospace engineering, 29 (2016).

DOI: 10.1061/(asce)as.1943-5525.0000568

Google Scholar

[22] I.S. Oyelakin, S. Mondal and P. Sibanda, Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions, Alexandria engineering journal, 55 (2016) 1025–1035.

DOI: 10.1016/j.aej.2016.03.003

Google Scholar

[23] I.S. Oyelakina, S. Mondala and P. Sibanda Unsteady MHD three-dimensional Casson nanofluid flow over a porous linear stretching sheet with slip condition, Frontiers in heat and mass transfer (FHMT), 8 (2017) 37.

DOI: 10.5098/hmt.8.37

Google Scholar

[24] R.V.M.S.S. Kiran Kumar, S.V.K. Varma, C.S.K. Raju, S.M. Ibrahim, G. Lorenzini and E. Lorenzini, Magnetohydrodynamic 3D slip flow in a suspension of carbon nanotubes over a slendering sheet with heat source/sink, Continuum Mechanics and Thermodynamics, 29 (2017).

DOI: 10.1007/s00161-017-0563-0

Google Scholar

[25] J.B.J. Fourier, Theorie analytique de la chaleur, Paris, (1822).

Google Scholar

[26] C. Cattaneo., Sulla conduzionedelcalore, and Atti Semin. Mat. Fis. Univ. Modena reggioemilia, 3 (1948) 83-101.

Google Scholar

[27] C.I. Christov., On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction, Mechanics research communication, 36 (2009) 481-486.

DOI: 10.1016/j.mechrescom.2008.11.003

Google Scholar

[28] B. Straughan, Thermal convection with the Cattaneo–Christov model, International Journal of Heat and Mass Transfer, 53 (2010) 95-98.

DOI: 10.1016/j.ijheatmasstransfer.2009.10.001

Google Scholar

[29] M. Mustafa, Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid, AIP ADVANCES, 5 (2015) 1-10.

DOI: 10.1063/1.4917306

Google Scholar

[30] F.M. Abbasi, M. Mustafa, S.A. Shehzad, M.S. Alhuthali, and T. Hayat, Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid, Chinese physics B, 25(2016) 1-6.

DOI: 10.1088/1674-1056/25/1/014701

Google Scholar

[31] T. Hayat, T. Muhammad, A. Alsaedi and B. Ahmad, Three-dimensional flow of nanofluid with Cattaneo-Christov double diffusion, Results in physics, 6 (2016) 897-903.

DOI: 10.1016/j.rinp.2016.10.017

Google Scholar

[32] T. Hayat, A. Kiran, M. Imtiaz and A. Alsaedi, Unsteady flow of carbon nanotubes with chemical reaction and Cattaneo-Christov heat flux model, Results in physics, 7(2017) 823-831.

DOI: 10.1016/j.rinp.2017.01.031

Google Scholar

[33] P. Kumar Kundu, T. Chakraborty and K. Das, Framing the Cattaneo-Christov Heat Flux Phenomena on CNT- Based Maxwell Nanofluid Along Stretching Sheet with Multiple Slips, Arab journal of science and engineering, 43 (2018) 1177-1188.

DOI: 10.1007/s13369-017-2786-6

Google Scholar

[34] S. Mamatha Upadhya, C.S.K. Raju , S. Saleem, A.A. Alderremy and Mahesha, Modified Fourier heat flux on MHD flow over stretched cylinder filled with Dust, Graphene and silver nanoparticles, Results in Physics, 9 (2018) 1377-1385.

DOI: 10.1016/j.rinp.2018.04.038

Google Scholar

[35] S. Mamatha Upadhya., Mahesha and C.S.K. Raju, Unsteady flow of Carreau fluid in a suspension of dust and graphene nanoparticles with Cattaneo-Christov heat flux, Journal of Heat Transfer, 4 (2018).

DOI: 10.1115/1.4039904

Google Scholar

[36] R.V.M.S.S. Kiran Kumar, C.S.K Raju, B. Mahanthesh, B.J Gireesha and S.V.K. Varma, Chemical Reaction Effects on Nano Carreau Liquid Flow Past a Cone and a Wedge with Cattaneo-Christov Heat Flux Model, International Journal of Chemical Reactor Engineering, 16 (2017).

DOI: 10.1515/ijcre-2017-0108

Google Scholar

[37] T. Hayat, S. Qayyum, S. Ali Shehzad and A. Alsaedi, Cattaneo-Christov double-diffusion theory for three-dimensional flow of viscoelastic nanofluid with the effect of heat generation/absorption, Results in Physics 8 (2018) 489–495.

DOI: 10.1016/j.rinp.2017.12.060

Google Scholar

[38] T. Hayat., S. Qayyum and S. Ali Shehzad, and A. Alsaedi, Chemical reaction and heat generation/absorption aspects in flow of Walters-B nanofluid with Cattaneo-Christov double-diffusion, Results in Physics 7 (2017) 4145–4152.

DOI: 10.1016/j.rinp.2017.10.036

Google Scholar

[39] Xiaoqin Xu and S. Chen., Cattaneo–Christov heat flux model for heat transfer of Marangoni boundary layer flow, in a copper-water nanofluid, Heat Transfer-Asian Res, (2017) 1-13.

DOI: 10.1002/htj.21273

Google Scholar

[40] C.Y. Wang., Free convection on a vertical stretching surface, Journal of applied mathematical and mechanics, 69 (1989) 418-420.

Google Scholar

[41] R.S. Reddy Gorla and I. Sidawi., Free convection on a vertical stretching surface with suction and blowing, Applied scientific research, 52 (1994) 247-257.

DOI: 10.1007/bf00853952

Google Scholar

[42] W.A. Khan and I. Pop., Boundary-layer flow of a nanofluid past a stretching sheet, International journal of heat and mass transfer, 53 (2010) 2477-2483.

DOI: 10.1016/j.ijheatmasstransfer.2010.01.032

Google Scholar