[1]
E.M.A. Elbashbeshy and M.A.A. Bazid, Heat transfer over an unsteady stretching surface, Heat and mass transfer, 41 (2004) 1-4.
DOI: 10.1007/s00231-004-0520-x
Google Scholar
[2]
I. Pop., and T.Yen. Na, Unsteady flow past a stretching sheet, Mechanics Research Communications, 23 (1996) 413-422.
DOI: 10.1016/0093-6413(96)00040-7
Google Scholar
[3]
C.Y. Wang., C.C. Chang, M. Miklavcic and G. Du, Impulsive stretching of a surface in a viscous fluid, SIAM Journal of Applied Mathematics, 57 (1997) 1-14.
DOI: 10.1137/s0036139995282050
Google Scholar
[4]
H.I., Andersson, J.B., Aarseth and B.S. Dandapat, Heat transfer in a liquid film on an unsteady stretching surface, International Journal of heat and mass transfer, 43 (2000) 69-74.
DOI: 10.1016/s0017-9310(99)00123-4
Google Scholar
[5]
S. Sharidan, T. Mahmood and I. Pop, Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet, International journal of applied mechanical engineering, 11 (2006) 647-654.
Google Scholar
[6]
A. Ishak, R. Naza and I. Pop, Boundary layer flow and heat transfer over an unsteady stretching vertical surface, Meccanica, 44 (2009) 369-75.
DOI: 10.1007/s11012-008-9176-9
Google Scholar
[7]
S. Mukhopadhyay., Effect of thermal radiation on unsteady mixed convection flow and heat transfer over a porous stretching surface in porous medium, International journal of heat and mass transfer, 52 (2009) 3261-3265.
DOI: 10.1016/j.ijheatmasstransfer.2008.12.029
Google Scholar
[8]
A. Ishak, Unsteady MHD flow and heat transfer over a stretching plate, Journal of applied science, 18 (2010) 2127-3110.
DOI: 10.3923/jas.2010.2127.2131
Google Scholar
[9]
W. Ibrahim and B. Shanker, Unsteady MHD boundary-layer flow and heat transfer due to stretching sheet in the presence of heat source or sink, Computers and Fluids, 70 (2012) 21-28.
DOI: 10.1016/j.compfluid.2012.08.019
Google Scholar
[10]
K. Bhattacharyya., S. Mukhopadhyay and G.C. Layek., Unsteady MHD boundary layer flow with diffusion and first-order chemical reaction over a permeable stretching sheet with suction or blowing, Chemical engineering communications, 200 (2013).
DOI: 10.1080/00986445.2012.712577
Google Scholar
[11]
D. Hunegnaw and N. Kishan, Unsteady MHD heat and mass transfer flow over stretching sheet in porous medium with variable properties considering viscous dissipation and chemical reaction, American chemical science journal, 4 (2014) 901-917.
DOI: 10.9734/acsj/2014/11972
Google Scholar
[12]
S.A. Shehzad., M. Waqas, A. Alsaedi and T. Hayat, Flow and heat transfer over an unsteady stretching sheet in a micropolar fluid with convective boundary condition, Journal of applied fluid mechanics, 9 (2016) 1437-1445.
DOI: 10.18869/acadpub.jafm.68.228.24172
Google Scholar
[13]
K. Das, P. Ranjan Duari and P. Kumar Kundu, Nanofluid flow over an unsteady stretching surface in presence of thermal radiation, Alexandria engineering journal, 53 (2014)737-745.
DOI: 10.1016/j.aej.2014.05.002
Google Scholar
[14]
B.K. Mahatha, R. Nandkeolyar, G.K. Mahto and P. Sibanda, Dissipative effects in hydromagnetic boundary layer nanofluid flow past a stretching sheet with Newtonian heating, Journal of applied fluid mechanics, 9 (2016) 1977-(1989).
DOI: 10.18869/acadpub.jafm.68.235.24451
Google Scholar
[15]
A.J. Chamkha, A.M. Rashad and E. AlMeshaiei, Melting effect on unsteady hydromagnetic flow of a nanofluid past a stretching sheet, International journal of chemical reactor engineering, 9 (2011) A113.
DOI: 10.2202/1542-6580.2613
Google Scholar
[16]
Md. Shakhaoath Khan, M. Ferdows, Md. Mahmud Alam and A.A. Afify, MHD boundary layer flow and heat transfer characteristics of a nanofluid over a stretching sheet, Acta universitatis sapientiae, Mathematica, 9 (2017) 140–161.
DOI: 10.1515/ausm-2017-0009
Google Scholar
[17]
F.G. Awad., Sami M.S. Ahamed, P. Sibanda and M. Khumalo, The effect of thermophoresis on unsteady oldroyd-B nanofluid flow over stretching surface, PLoS ONE, 10 (2015): e0135914.
DOI: 10.1371/journal.pone.0135914
Google Scholar
[18]
M. Khan and W. Azeem Khan, Forced convection analysis for generalized Burgers nanofluid flow over a stretching sheet, AIP advances, 5 (2015) 1-11.
DOI: 10.1063/1.4935043
Google Scholar
[19]
O.D. Makinde and A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, International journal of thermal sciences, 50 (2011) 1326-1332.
DOI: 10.1016/j.ijthermalsci.2011.02.019
Google Scholar
[20]
O.D. Makinde., W.A. Khan and Z.H. Khan, Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, International journal heat and mass transfer, 62 (2013) 526-533.
DOI: 10.1016/j.ijheatmasstransfer.2013.03.049
Google Scholar
[21]
T. Hayat, M. Imtiaz and A. Alsaedi, Magnetohydrodynamic stagnation point flow of a Jeffrey nanofluid with Newtonian heating, Journal of aerospace engineering, 29 (2016).
DOI: 10.1061/(asce)as.1943-5525.0000568
Google Scholar
[22]
I.S. Oyelakin, S. Mondal and P. Sibanda, Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions, Alexandria engineering journal, 55 (2016) 1025–1035.
DOI: 10.1016/j.aej.2016.03.003
Google Scholar
[23]
I.S. Oyelakina, S. Mondala and P. Sibanda Unsteady MHD three-dimensional Casson nanofluid flow over a porous linear stretching sheet with slip condition, Frontiers in heat and mass transfer (FHMT), 8 (2017) 37.
DOI: 10.5098/hmt.8.37
Google Scholar
[24]
R.V.M.S.S. Kiran Kumar, S.V.K. Varma, C.S.K. Raju, S.M. Ibrahim, G. Lorenzini and E. Lorenzini, Magnetohydrodynamic 3D slip flow in a suspension of carbon nanotubes over a slendering sheet with heat source/sink, Continuum Mechanics and Thermodynamics, 29 (2017).
DOI: 10.1007/s00161-017-0563-0
Google Scholar
[25]
J.B.J. Fourier, Theorie analytique de la chaleur, Paris, (1822).
Google Scholar
[26]
C. Cattaneo., Sulla conduzionedelcalore, and Atti Semin. Mat. Fis. Univ. Modena reggioemilia, 3 (1948) 83-101.
Google Scholar
[27]
C.I. Christov., On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction, Mechanics research communication, 36 (2009) 481-486.
DOI: 10.1016/j.mechrescom.2008.11.003
Google Scholar
[28]
B. Straughan, Thermal convection with the Cattaneo–Christov model, International Journal of Heat and Mass Transfer, 53 (2010) 95-98.
DOI: 10.1016/j.ijheatmasstransfer.2009.10.001
Google Scholar
[29]
M. Mustafa, Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid, AIP ADVANCES, 5 (2015) 1-10.
DOI: 10.1063/1.4917306
Google Scholar
[30]
F.M. Abbasi, M. Mustafa, S.A. Shehzad, M.S. Alhuthali, and T. Hayat, Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid, Chinese physics B, 25(2016) 1-6.
DOI: 10.1088/1674-1056/25/1/014701
Google Scholar
[31]
T. Hayat, T. Muhammad, A. Alsaedi and B. Ahmad, Three-dimensional flow of nanofluid with Cattaneo-Christov double diffusion, Results in physics, 6 (2016) 897-903.
DOI: 10.1016/j.rinp.2016.10.017
Google Scholar
[32]
T. Hayat, A. Kiran, M. Imtiaz and A. Alsaedi, Unsteady flow of carbon nanotubes with chemical reaction and Cattaneo-Christov heat flux model, Results in physics, 7(2017) 823-831.
DOI: 10.1016/j.rinp.2017.01.031
Google Scholar
[33]
P. Kumar Kundu, T. Chakraborty and K. Das, Framing the Cattaneo-Christov Heat Flux Phenomena on CNT- Based Maxwell Nanofluid Along Stretching Sheet with Multiple Slips, Arab journal of science and engineering, 43 (2018) 1177-1188.
DOI: 10.1007/s13369-017-2786-6
Google Scholar
[34]
S. Mamatha Upadhya, C.S.K. Raju , S. Saleem, A.A. Alderremy and Mahesha, Modified Fourier heat flux on MHD flow over stretched cylinder filled with Dust, Graphene and silver nanoparticles, Results in Physics, 9 (2018) 1377-1385.
DOI: 10.1016/j.rinp.2018.04.038
Google Scholar
[35]
S. Mamatha Upadhya., Mahesha and C.S.K. Raju, Unsteady flow of Carreau fluid in a suspension of dust and graphene nanoparticles with Cattaneo-Christov heat flux, Journal of Heat Transfer, 4 (2018).
DOI: 10.1115/1.4039904
Google Scholar
[36]
R.V.M.S.S. Kiran Kumar, C.S.K Raju, B. Mahanthesh, B.J Gireesha and S.V.K. Varma, Chemical Reaction Effects on Nano Carreau Liquid Flow Past a Cone and a Wedge with Cattaneo-Christov Heat Flux Model, International Journal of Chemical Reactor Engineering, 16 (2017).
DOI: 10.1515/ijcre-2017-0108
Google Scholar
[37]
T. Hayat, S. Qayyum, S. Ali Shehzad and A. Alsaedi, Cattaneo-Christov double-diffusion theory for three-dimensional flow of viscoelastic nanofluid with the effect of heat generation/absorption, Results in Physics 8 (2018) 489–495.
DOI: 10.1016/j.rinp.2017.12.060
Google Scholar
[38]
T. Hayat., S. Qayyum and S. Ali Shehzad, and A. Alsaedi, Chemical reaction and heat generation/absorption aspects in flow of Walters-B nanofluid with Cattaneo-Christov double-diffusion, Results in Physics 7 (2017) 4145–4152.
DOI: 10.1016/j.rinp.2017.10.036
Google Scholar
[39]
Xiaoqin Xu and S. Chen., Cattaneo–Christov heat flux model for heat transfer of Marangoni boundary layer flow, in a copper-water nanofluid, Heat Transfer-Asian Res, (2017) 1-13.
DOI: 10.1002/htj.21273
Google Scholar
[40]
C.Y. Wang., Free convection on a vertical stretching surface, Journal of applied mathematical and mechanics, 69 (1989) 418-420.
Google Scholar
[41]
R.S. Reddy Gorla and I. Sidawi., Free convection on a vertical stretching surface with suction and blowing, Applied scientific research, 52 (1994) 247-257.
DOI: 10.1007/bf00853952
Google Scholar
[42]
W.A. Khan and I. Pop., Boundary-layer flow of a nanofluid past a stretching sheet, International journal of heat and mass transfer, 53 (2010) 2477-2483.
DOI: 10.1016/j.ijheatmasstransfer.2010.01.032
Google Scholar