Impact of Soret and Dufour Numbers on MHD Casson Fluid Flow Past an Exponentially Stretching Sheet with Non-Uniform Heat Source/Sink

Article Preview

Abstract:

Present study deals with the impact of cross diffusion on Casson fluid flow in the presence of Lorentz force. Flow is caused by the exponential stretching of surface in two lateral directions. The influence of space dependent varying heat sink/source is also contemplated. The basic governing equations are first converted into system of ODEs and then solved using an efficient numerical procedure namely R.K. based shooting technique. From the solution we found that flow is affected by some physical parameters like Casson parameter, non uniform heat parameters, Soret and Dufour numbers etc. Hence the impact of such parameters on velocity, temperature and concentration profiles is shown via plots. Further the friction factor, local Nusselt and Sherwood numbers are also calculated and given in tables. Results indicate that an increase in the Casson parameter enhances the temperature and concentration fields. Dufour and Soret numbers have tendency to enhance temperature and concentration fields respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-27

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Acrivos, M.J. Shah, E.E. Petersen, Momentum and heat transfer in laminar boundary-layer flows of non-Newtonian fluids past external surfaces, AICHE J. 6 (1960) 312-317.

DOI: 10.1002/aic.690060227

Google Scholar

[2] J.P. Hartnett, M. Kostic, Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts, Adv. Heat Transf. 19 (1989) 247-356.

DOI: 10.1016/s0065-2717(08)70214-4

Google Scholar

[3] M. Kumari, I. Pop, H.S. Takhar, Free-convection boundary-layer flow of non-Newtonian fluid along a vertical wavy surface, Int. J. Heat Fluid Flow 18 (1997) 625-631.

DOI: 10.1016/s0142-727x(97)00024-6

Google Scholar

[4] C.C. Wang, Mixed convection boundary layer flow of non-Newtonian fluids along vertical wavy plates, Int. J. Heat Fluid Flow 23 (2002) 831-839.

DOI: 10.1016/s0142-727x(02)00145-5

Google Scholar

[5] N.T.M. Eldabe, M.F. El-Sayed, A.Y. Ghaly, H.M. Sayed, Mixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosity, Arch. Appl. Math. 78 (2008) 599-624.

DOI: 10.1007/s00419-007-0181-6

Google Scholar

[6] I.L. Animasaun, Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction, J. Nigerian Math. Soc. 34 (2015).

DOI: 10.1080/16583655.2020.1781431

Google Scholar

[7] J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, Enhanced heat transfer in the flow of dissipative non-Newtonian Casson fluid flow over a convectively heated upper surface of a paraboloid of revolution, J. Mol. Liq. 229 (2017) 380-388.

DOI: 10.1016/j.molliq.2016.12.100

Google Scholar

[8] N.S. Khan, T. Gul, S. Islam, W. Khan, Thermophoresis and thermal radiation with aheat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheet, Europ. Phys. J. Plus 132 (2017).

DOI: 10.1140/epjp/i2017-11277-3

Google Scholar

[9] A.S. Eegunjobi, O.D. Makinde, MHD mixed convection slip flow of radiating Casson fluid with entropy generation in a channel filled with porous media, Def. Diff. Forum, 374 (2017) 47-66.

DOI: 10.4028/www.scientific.net/ddf.374.47

Google Scholar

[10] W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition, J. Aerosp. Eng. 29 (2016) Article Id: 04015037.

DOI: 10.1061/(asce)as.1943-5525.0000529

Google Scholar

[11] P.S. Gupta, A.S. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, Canad. J. Chem. Eng. 55 (1977) 744-746.

DOI: 10.1002/cjce.5450550619

Google Scholar

[12] H.A. Attia, N.A. Kotb, MHD flow between two parallel plates with heat transfer, Acta Mech. 117 (1996) 215-220.

DOI: 10.1007/bf01181049

Google Scholar

[13] R. Ellahi, M. Hameed, Numerical analysis of steady non-Newtonian flows with heat transfer analysis, MHD and nonlinear slip effects, Int. J. Numer. Methods Heat Fluid Flow 22 (2012) 24-38.

DOI: 10.1108/09615531211188775

Google Scholar

[14] M.S. Abel, N. Mahesha, Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Appl. Math. Model. 32 (2008) 1965-(1983).

DOI: 10.1016/j.apm.2007.06.038

Google Scholar

[15] O.D. Makinde, N. Sandeep, I.L. Animasaun, M.S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, Defect and Diffusion Forum 374 (2017) 67-82.

DOI: 10.4028/www.scientific.net/ddf.374.67

Google Scholar

[16] S. Srinivas, M. Kothandapani, The influence of heat and mass transfer on MHD peristaltic flow through a porous space with complaint walls, Appl. Math. Comp. 213 (2009) 197-208.

DOI: 10.1016/j.amc.2009.02.054

Google Scholar

[17] M.M. Nandeppanavar, M.S. Abel, J. Tawade, Heat transfer in a Walter's liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink and elastic deformation, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 1791-1802.

DOI: 10.1016/j.cnsns.2009.07.009

Google Scholar

[18] A. Malvandi, F. Hedayati, G. Domairry, Stagnation point flow of a nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption, J. Thermodynamics 2013 (2013) Article Id: 764827.

DOI: 10.1155/2013/764827

Google Scholar

[19] A.J. Benazir, R. Sivaraj, O.D. Makinde, Unsteady magnetohydrodynamic Casson fluid flow over a vertical cone and a flat plate with non-uniform heat source/sink, Int. J. Eng. Res. Afr. 21 (2016) 69-83.

DOI: 10.4028/www.scientific.net/jera.21.69

Google Scholar

[20] J.V.R. Reddy, V. Sugunamma, N. Sandeep, C.S.K. Raju, Chemically reacting MHD dusty nanofluid flow over a vertical cone with non-uniform heat source/sink, Walailak J. Sci. Tech. 14 (2016) 141-156.

Google Scholar

[21] O.D. Makinde, P.O. Olanrewaju, Unsteady mixed convection with Soret and Dufour effects past a porous plate moving through a binary mixture of chemically reacting fluid, Chem. Eng. Commun. 198 (2011) 920-938.

DOI: 10.1080/00986445.2011.545296

Google Scholar

[22] D. Pal, H. Mondal, Soret and Dufour effects on MHD non-Darcian mixed convection heat and mass transfer over a stretching sheet with non-uniform heat source/sink, Physica B 407 (2012) 642-651.

DOI: 10.1016/j.physb.2011.11.051

Google Scholar

[23] T. Hayat, S.A. Shehzad, A. Alsaedi, Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid, Appl. Math. Mech. 33 (2012) 1301-1312.

DOI: 10.1007/s10483-012-1623-6

Google Scholar

[24] A. Mahdy, S.E. Ahmed, Thermo solutal Marangoni boundary layer magnetohydrodynamic flow with the Soret and Dufour effects past a vertical flat plate, Eng. Sci. Tech., Int. J. 18 (2015) 24-31.

DOI: 10.1016/j.jestch.2014.08.003

Google Scholar

[25] M.A.M. Ahmed, M.E. Mohammed, A.A. Khidir, The effects of cross-diffusion and radiation on mixed convection from a vertical flat plate embedded in a fluid-saturated porous medium in the presence of viscous dissipation, Prop. Pow. Res. 5 (2016).

DOI: 10.1016/j.jppr.2016.05.001

Google Scholar

[26] J.V. Ramana Reddy, K. Anantha Kumar, V. Sugunamma, N. Sandeep, Effects of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, Alex. Eng. J. (2017).

DOI: 10.1016/j.aej.2017.03.008

Google Scholar

[27] P.M. Krishna, G. Vidyasagar, N. Sandeep, V. Sugunamma, Soret and Dufour effects on MHD free convective flow over a permeable stretching surface with chemical reaction and heat source, Int. J. Sci. Eng. Res. 6 (2015) 143-147.

Google Scholar

[28] M. Ezzat, M. Zakaria, M. Moursy, Magnetohydrodynamic boundary layer flow past a stretching plate and heat transfer, J. Appl. Math. 2004 (2004) 9-21.

DOI: 10.1155/s1110757x04306145

Google Scholar

[29] A. Postelnicu, I. Pop, Falkner-Skan boundary layer flow of a power-law fluid past a stretching wedge, Appl. Math. Comp. 217 (2011) 4359-4368.

DOI: 10.1016/j.amc.2010.09.037

Google Scholar

[30] N.A. Yacob, A. Ishak, I. Pop, K. Vajravelu, Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid, Nanoscale Res. Lett. 6 (2011).

DOI: 10.1186/1556-276x-6-314

Google Scholar

[31] S. Nadeem, R.U. Haq, C. Lee, MHD flow of a Casson fluid over an exponentially shrinking sheet, Scientia Iranica 19 (2012) 1550-1553.

DOI: 10.1016/j.scient.2012.10.021

Google Scholar

[32] S.A. Shehzad, A. Alsaedi, T. Hayat, Hydromagnetic steady flow of Maxwell fluid over a bidirectional stretching surface with prescribed surface temperature and prescribed surface heat flux, PLoS One 8 (2013) Article Id: e68139.

DOI: 10.1371/journal.pone.0068139

Google Scholar

[33] P.M. Krishna, N. Sandeep, R.P. Sharma, O.D. Makinde, Thermal radiation effect on 3D slip motion of AlCu-water and Cu-water nanofluids over a variable thickness stretched surface, Def. Diff. Forum 377 (2017) 141-154.

DOI: 10.4028/www.scientific.net/ddf.377.141

Google Scholar

[34] R. Ahmad, M. Mustafa, T. Hayat, A. Alsaedi, Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet, J. Magn. Magn. Mater. 407 (2016) 69-74.

DOI: 10.1016/j.jmmm.2016.01.038

Google Scholar