Modeling Thermal Conductivity Ratio of CuO/Ethylene Glycol Nanofluid by Using Artificial Neural Network

Article Preview

Abstract:

The thermal conductivity of nanofluids depends on several factors such as temperature, concentration, and temperature. These parameters have the most significant effect on thermal conductivity compared with other factors. In the present study, the accuracy of trained Perceptron neural network with 10 neurons and three input variables including size of nanoparticles, temperature, and concentration is evaluated. The sum of squared errors and the correlation coefficient of the trained neural network are equal to 0.99293 and 0.00031, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-43

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Narei H, Ghasempour R, Noorollahi Y. The effect of employing nanofluid on reducing the bore length of a vertical ground-source heat pump. Energy Convers Manag 2016;123:581–91.

DOI: 10.1016/j.enconman.2016.06.079

Google Scholar

[2] Wang B, Wang X, Lou W, Hao J. Thermal conductivity and rheological properties of graphite/oil nanofluids. Colloids Surfaces A Physicochem Eng Asp 2012;414:125–31.

DOI: 10.1016/j.colsurfa.2012.08.008

Google Scholar

[3] Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim 2016;125:527–35.

DOI: 10.1007/s10973-016-5436-4

Google Scholar

[4] Ahmadloo E, Azizi S. Prediction of thermal conductivity of various nanofluids using artificial neural network. Int Commun Heat Mass Transf 2016;74:69–75.

DOI: 10.1016/j.icheatmasstransfer.2016.03.008

Google Scholar

[5] Ahmadi MH, Alhuyi Nazari M, Ghasempour R, Madah H, Shafii MB, Ahmadi MA. Thermal conductivity ratio prediction of Al2O3/water nanofluid by applying connectionist methods. Colloids Surfaces A Physicochem Eng Asp 2018;541:154–64.

DOI: 10.1016/j.colsurfa.2018.01.030

Google Scholar

[6] Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transf 2018;91:90–4.

DOI: 10.1016/j.icheatmasstransfer.2017.12.006

Google Scholar

[7] Ahmadi MH, Mirlohi A, Nazari MA, Ghasempour R. A review of thermal conductivity of various nanofluids. J Mol Liq 2018.

Google Scholar

[8] Aramesh M, Pourfayaz F, Kasaeian A. Numerical investigation of the nanofluid effects on the heat extraction process of solar ponds in the transient step. Sol Energy 2017;157:869–79.

DOI: 10.1016/j.solener.2017.09.011

Google Scholar

[9] Manimaran R, Palaniradja K, Alagumurthi N, Hussain J. Experimental comparative study of heat pipe performance using CuO and TiO 2 nanofluids. Int J Energy Res 2014;38:573–80.

DOI: 10.1002/er.3058

Google Scholar

[10] Wongcharee K, Chuwattanakul V, Eiamsa-ard S. Influence of CuO/water nanofluid concentration and swirling flow on jet impingement cooling. Int Commun Heat Mass Transf 2017.

DOI: 10.1016/j.icheatmasstransfer.2017.08.020

Google Scholar

[11] Maheshwary PB, Handa CC, Nemade KR. A comprehensive study of effect of concentration, particle size and particle shape on thermal conductivity of titania/water based nanofluid. Appl Therm Eng 2017;119:79–88.

DOI: 10.1016/j.applthermaleng.2017.03.054

Google Scholar

[12] Hossein Karimi Darvanjooghi M, Nasr Esfahany M. Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid. Int Commun Heat Mass Transf 2016;77:148–54.

DOI: 10.1016/j.icheatmasstransfer.2016.08.001

Google Scholar

[13] Kasaeian A, Ghalamchi M, Ahmadi MH, Ghalamchi M. GMDH algorithm for modeling the outlet temperatures of a solar chimney based on the ambient temperature. Mech Ind 2017;18:216.

DOI: 10.1051/meca/2016034

Google Scholar

[14] Ahmadi MH, Ahmadi MA, Mehrpooya M, Rosen MA. Using GMDH neural networks to model the power and torque of a stirling engine. Sustain 2015;7:2243–55.

DOI: 10.3390/su7022243

Google Scholar

[15] Pourkiaei SM, Ahmadi MH, Hasheminejad SM. Modeling and experimental verification of a 25W fabricated PEM fuel cell by parametric and GMDH-type neural network. Mech Ind 2016;17:105.

DOI: 10.1051/meca/2015050

Google Scholar

[16] Agarwal R, Verma K, Agrawal NK, Duchaniya RK, Singh R. Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids. Appl Therm Eng 2016;102:1024–36.

DOI: 10.1016/j.applthermaleng.2016.04.051

Google Scholar

[17] Liu M, Lin M, Wang C. Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res Lett 2011;6:297.

DOI: 10.1186/1556-276x-6-297

Google Scholar

[18] Wang X, Xu X, S. Choi SU. Thermal Conductivity of Nanoparticle - Fluid Mixture. J Thermophys Heat Transf 1999;13:474–80.

Google Scholar

[19] Lee S, Choi SU-S, Li S, Eastman JA. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. J Heat Transfer 1999;121:280.

DOI: 10.1115/1.2825978

Google Scholar

[20] Liu MS, Lin MCC, Huang I Te, Wang CC. Enhancement of thermal conductivity with CuO for nanofluids. Chem Eng Technol 2006;29:72–7.

Google Scholar