Thermal Radiation and Heat Source Effects on MHD Non-Newtonian Fluid Flow over a Slandering Stretching Sheet with Cross-Diffusion

Article Preview

Abstract:

Magnetohydrodynamic non-Newtonian fluid flow over a stretching sheet with intermittent thickness under multifarious slips is appraised. Williamson fluid pattern is incorporated in this discussion. The energy and concentration equations are confederated with the repercussion of Soret and Dufour. We endorsed homotopy analysis method (HAM) to collocate the solutions of ODE. The graphical and tabular results for velocity, temperature, concentration, friction factor, heat and mass transfer rates when (Newtonian fluid) and (non-Newtonian fluid-Williamson fluid) are secured and discussed in detail.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-38

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. E. Tewfik, E. R. G. Eckert, L. S. Jurewicz, Diffusion-thermo effects on heat transfer from a cylinder in cross flow, AIAA J. 1 (1963) 1537-1543.

DOI: 10.2514/3.1852

Google Scholar

[2] A. Postelnicu, Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects, Int. J. Heat Mass Transfer. 47 (2004) 1467-1472.

DOI: 10.1016/j.ijheatmasstransfer.2003.09.017

Google Scholar

[3] A. Postelnicu, Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects, Heat Mass Transfer. 43 (2007) 595-602.

DOI: 10.1007/s00231-006-0132-8

Google Scholar

[4] M. K. Partha, P. V. S. N. Murthy, G. P. Raja Sekhar, Soret and Dufour effects in a non-Darcy porous medium, J. Heat Transfer. 128 (2005) 605-610.

DOI: 10.1115/1.2188512

Google Scholar

[5] N. Ali, S. U. Khan, Z. Abbas, M. Sajid, Soret and Dufour effects on hydromagnetic flow of viscoelastic fluid over porous oscillatory stretching sheet with thermal radiation. Braz. Soc. Mech. Sci. Eng. 38 (2016) 2533-2546.

DOI: 10.1007/s40430-016-0506-x

Google Scholar

[6] Dulal Pal, Gopinath Mandal, Kuppalapalle Vajravalu, Soret and Dufour effects on MHD convective–radiative heat and mass transfer of nanofluids over a vertical non-linear stretching/shrinking sheet, Appl. Math. Comput. 287-288 (2016) 184-200.

DOI: 10.1016/j.amc.2016.04.037

Google Scholar

[7] Jinhu Zhao, Liancun Zheng, Xinxin Zhang, Fawang Liu, Convective heat and mass transfer of fractional MHD Maxwell fluid in a porous medium with Soret and Dufour effects, Int. J. Heat Mass Transfer. 103 (2016) 203-210.

DOI: 10.1016/j.ijheatmasstransfer.2016.07.057

Google Scholar

[8] SwathiMukhopadhayy, Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation, Ain Shams Eng. J. 4 (2008), 51-59.

DOI: 10.1016/j.asej.2012.10.007

Google Scholar

[9] M. Khan, T, Hayat, Y. Wang, Slip effects on shearing flow in porous medium, Acta Mech. Sinica. 24 (2008) 51-59.

DOI: 10.1007/s10409-007-0123-0

Google Scholar

[10] R. V. Williamson, The flow of pseudoplastic materialsInd. Eng. Chem. 21 (1929) 1108- 1111.

Google Scholar

[11] S. Nadeem, S. T. Hussian, Heat transfer analysis of Williamson fluid over exponentially stretching surface, Appl. Math. Mech. 35 (2014) 489-502.

DOI: 10.1007/s10483-014-1807-6

Google Scholar

[12] A. Zaib, K. Bhattacharyya, M. Khalid, S. Shafie, Thermal radiation effect on a mixed convection flow and heat transfer of the Williamson fluid past an exponentially shrinking permeable sheet with a convective boundary condition, J. Appl. Mech. Tech. Phys. 58 (2017).

DOI: 10.1134/s0021894417030063

Google Scholar

[13] S. Nadeem, S. T. Hussain, Changhoon Lee, Flow of a Williamson fluid over a stretching sheet, Braz. J. Chem. Eng. 30 (2013) 619-625.

DOI: 10.1590/s0104-66322013000300019

Google Scholar

[14] M. Y. Malik, T. Salahuddin, Numerical solution of MHD stagnation point flow of Williamson fluid model over a stretching cylinder, Int. J. Nonlin. Sci. Num. 16 (2015) 161-164.

DOI: 10.1515/ijnsns-2014-0035

Google Scholar

[15] Fazle Mabood, Sheik M. Ibrahim, Giulio Lorenzini, Enrico Lorenzini, Radiation effects on Williamson nanofluid flow over a heated surface with magnetohydrodynamics, Int. J. Heat Technol. 35 (2017) 196-204.

DOI: 10.18280/ijht.350126

Google Scholar

[16] M. M. Bhatti, M. M. Rashidi, Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching, J. Mol. Liq. 221 (2016) 567-573.

DOI: 10.1016/j.molliq.2016.05.049

Google Scholar

[17] L. Lee, Boundary layer flow over a thin layer, Physics of Fluids, 10 (1967) 820-822.

Google Scholar

[18] T. Fang, J. Zhang, Y. Zhong, Boundary layer flow over a stretching sheet with variable thickness, Appl. Math. Comput. 218 (2012) 7242-7252.

DOI: 10.1016/j.amc.2011.12.094

Google Scholar

[19] K. V. Prasad, K. Vajravelu, Hanumesh Vaidya, Robert A. Van Gorder, MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness, Results Phys. 7 (2017) 1462-1474.

DOI: 10.1016/j.rinp.2017.03.022

Google Scholar

[20] S. P. Anjali Devi, M. Prakash, Thermal radiation effects on hydromagnetic flow over a slandering stretching sheet, J. Braz. Soc. Mech. Sci. Eng. 38 (2016) 423-431.

DOI: 10.1007/s40430-015-0315-7

Google Scholar

[21] C. Srinivas Reddy, Kishan Naikoti and M. M. Rashid, MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity, Trans. A. Razmadze Math. Inst. 171 (2017).

DOI: 10.1016/j.trmi.2017.02.004

Google Scholar

[22] R. V. M. S. S. Kiran Kumar, S. Vijaya Kumar Varma, C. S. K. Raju, S. M. Ibrahim, G. Lorenzini, E. Lorenzini, Magnetohydrodynamic 3D slip flow in a suspension of carbon nanotubes over a slendering sheet with heat source/sink, Continuum Mech. Thermodyn. 29 (2017).

DOI: 10.1007/s00161-017-0563-0

Google Scholar

[23] S. J. Liao, Homotopy analysis method in nonlinear differential equations, Springer & Higher Education Press, Heidelberg, (2012).

Google Scholar

[24] T. Hayat, S. A. Shehzad, A. Alsaedi, Soret and Dufour effects on Magnetohydrodynamic (MHD) flow of Casson fluid, Appl. Math. Mech. 33 (2012) 1301-1312.

DOI: 10.1007/s10483-012-1623-6

Google Scholar

[25] S. M. Ibrahim, P. V. Kumar, G. Lorenzini, E. Lorenzini, F. Mabood, Numerical study of the onset of chemical reaction and heat source on dissipative mhd stagnation point flow of Casson nanofluid over a nonlinear stretching sheet with velocity slip and convective boundary conditions, J. Eng. Thermophys. 26 (2017).

DOI: 10.1134/s1810232817020096

Google Scholar

[26] S. M. Ibrahim, G. Lorenzini, P. Vijaya Kumar, C. S. K. Raju, Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet, Int. J. Heat Mass Transfer. 111 (2017).

DOI: 10.1016/j.ijheatmasstransfer.2017.03.097

Google Scholar