[1]
O. E. Tewfik, E. R. G. Eckert, L. S. Jurewicz, Diffusion-thermo effects on heat transfer from a cylinder in cross flow, AIAA J. 1 (1963) 1537-1543.
DOI: 10.2514/3.1852
Google Scholar
[2]
A. Postelnicu, Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects, Int. J. Heat Mass Transfer. 47 (2004) 1467-1472.
DOI: 10.1016/j.ijheatmasstransfer.2003.09.017
Google Scholar
[3]
A. Postelnicu, Influence of chemical reaction on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects, Heat Mass Transfer. 43 (2007) 595-602.
DOI: 10.1007/s00231-006-0132-8
Google Scholar
[4]
M. K. Partha, P. V. S. N. Murthy, G. P. Raja Sekhar, Soret and Dufour effects in a non-Darcy porous medium, J. Heat Transfer. 128 (2005) 605-610.
DOI: 10.1115/1.2188512
Google Scholar
[5]
N. Ali, S. U. Khan, Z. Abbas, M. Sajid, Soret and Dufour effects on hydromagnetic flow of viscoelastic fluid over porous oscillatory stretching sheet with thermal radiation. Braz. Soc. Mech. Sci. Eng. 38 (2016) 2533-2546.
DOI: 10.1007/s40430-016-0506-x
Google Scholar
[6]
Dulal Pal, Gopinath Mandal, Kuppalapalle Vajravalu, Soret and Dufour effects on MHD convective–radiative heat and mass transfer of nanofluids over a vertical non-linear stretching/shrinking sheet, Appl. Math. Comput. 287-288 (2016) 184-200.
DOI: 10.1016/j.amc.2016.04.037
Google Scholar
[7]
Jinhu Zhao, Liancun Zheng, Xinxin Zhang, Fawang Liu, Convective heat and mass transfer of fractional MHD Maxwell fluid in a porous medium with Soret and Dufour effects, Int. J. Heat Mass Transfer. 103 (2016) 203-210.
DOI: 10.1016/j.ijheatmasstransfer.2016.07.057
Google Scholar
[8]
SwathiMukhopadhayy, Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation, Ain Shams Eng. J. 4 (2008), 51-59.
DOI: 10.1016/j.asej.2012.10.007
Google Scholar
[9]
M. Khan, T, Hayat, Y. Wang, Slip effects on shearing flow in porous medium, Acta Mech. Sinica. 24 (2008) 51-59.
DOI: 10.1007/s10409-007-0123-0
Google Scholar
[10]
R. V. Williamson, The flow of pseudoplastic materialsInd. Eng. Chem. 21 (1929) 1108- 1111.
Google Scholar
[11]
S. Nadeem, S. T. Hussian, Heat transfer analysis of Williamson fluid over exponentially stretching surface, Appl. Math. Mech. 35 (2014) 489-502.
DOI: 10.1007/s10483-014-1807-6
Google Scholar
[12]
A. Zaib, K. Bhattacharyya, M. Khalid, S. Shafie, Thermal radiation effect on a mixed convection flow and heat transfer of the Williamson fluid past an exponentially shrinking permeable sheet with a convective boundary condition, J. Appl. Mech. Tech. Phys. 58 (2017).
DOI: 10.1134/s0021894417030063
Google Scholar
[13]
S. Nadeem, S. T. Hussain, Changhoon Lee, Flow of a Williamson fluid over a stretching sheet, Braz. J. Chem. Eng. 30 (2013) 619-625.
DOI: 10.1590/s0104-66322013000300019
Google Scholar
[14]
M. Y. Malik, T. Salahuddin, Numerical solution of MHD stagnation point flow of Williamson fluid model over a stretching cylinder, Int. J. Nonlin. Sci. Num. 16 (2015) 161-164.
DOI: 10.1515/ijnsns-2014-0035
Google Scholar
[15]
Fazle Mabood, Sheik M. Ibrahim, Giulio Lorenzini, Enrico Lorenzini, Radiation effects on Williamson nanofluid flow over a heated surface with magnetohydrodynamics, Int. J. Heat Technol. 35 (2017) 196-204.
DOI: 10.18280/ijht.350126
Google Scholar
[16]
M. M. Bhatti, M. M. Rashidi, Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching, J. Mol. Liq. 221 (2016) 567-573.
DOI: 10.1016/j.molliq.2016.05.049
Google Scholar
[17]
L. Lee, Boundary layer flow over a thin layer, Physics of Fluids, 10 (1967) 820-822.
Google Scholar
[18]
T. Fang, J. Zhang, Y. Zhong, Boundary layer flow over a stretching sheet with variable thickness, Appl. Math. Comput. 218 (2012) 7242-7252.
DOI: 10.1016/j.amc.2011.12.094
Google Scholar
[19]
K. V. Prasad, K. Vajravelu, Hanumesh Vaidya, Robert A. Van Gorder, MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness, Results Phys. 7 (2017) 1462-1474.
DOI: 10.1016/j.rinp.2017.03.022
Google Scholar
[20]
S. P. Anjali Devi, M. Prakash, Thermal radiation effects on hydromagnetic flow over a slandering stretching sheet, J. Braz. Soc. Mech. Sci. Eng. 38 (2016) 423-431.
DOI: 10.1007/s40430-015-0315-7
Google Scholar
[21]
C. Srinivas Reddy, Kishan Naikoti and M. M. Rashid, MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity, Trans. A. Razmadze Math. Inst. 171 (2017).
DOI: 10.1016/j.trmi.2017.02.004
Google Scholar
[22]
R. V. M. S. S. Kiran Kumar, S. Vijaya Kumar Varma, C. S. K. Raju, S. M. Ibrahim, G. Lorenzini, E. Lorenzini, Magnetohydrodynamic 3D slip flow in a suspension of carbon nanotubes over a slendering sheet with heat source/sink, Continuum Mech. Thermodyn. 29 (2017).
DOI: 10.1007/s00161-017-0563-0
Google Scholar
[23]
S. J. Liao, Homotopy analysis method in nonlinear differential equations, Springer & Higher Education Press, Heidelberg, (2012).
Google Scholar
[24]
T. Hayat, S. A. Shehzad, A. Alsaedi, Soret and Dufour effects on Magnetohydrodynamic (MHD) flow of Casson fluid, Appl. Math. Mech. 33 (2012) 1301-1312.
DOI: 10.1007/s10483-012-1623-6
Google Scholar
[25]
S. M. Ibrahim, P. V. Kumar, G. Lorenzini, E. Lorenzini, F. Mabood, Numerical study of the onset of chemical reaction and heat source on dissipative mhd stagnation point flow of Casson nanofluid over a nonlinear stretching sheet with velocity slip and convective boundary conditions, J. Eng. Thermophys. 26 (2017).
DOI: 10.1134/s1810232817020096
Google Scholar
[26]
S. M. Ibrahim, G. Lorenzini, P. Vijaya Kumar, C. S. K. Raju, Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet, Int. J. Heat Mass Transfer. 111 (2017).
DOI: 10.1016/j.ijheatmasstransfer.2017.03.097
Google Scholar