[1]
Ahmadi MH, Sayyaadi H, Dehghani S, Hosseinzade H. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power. Energy Convers Manag 2013;75:282–91.
DOI: 10.1016/j.enconman.2013.06.025
Google Scholar
[2]
Ahmadi MH, Sayyaadi H, Mohammadi AH, Barranco-Jimenez MA. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm. Energy Convers Manag 2013; 73: 370–80.
DOI: 10.1016/j.enconman.2013.05.031
Google Scholar
[3]
Ashouri M, Khoshkar Vandani AM, Mehrpooya M, Ahmadi MH, Abdollahpour A. Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector. Energy Convers Manag 2015;105:1328–39.
DOI: 10.1016/j.enconman.2015.09.015
Google Scholar
[4]
Mohammadi A, Ahmadi MH, Bidi M, Ghazvini M, Ming T. Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Reports 2018;4:243–51.
DOI: 10.1016/j.egyr.2018.03.001
Google Scholar
[5]
Mohammadnezami M, Ehyaei M, Rosen M, Ahmadi M. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System. Sustainability 2015;7:2554–69.
DOI: 10.3390/su7032554
Google Scholar
[6]
Mohammadi A, Ahmadi MH, Bidi M, Joda F, Valero A, Uson S. Exergy analysis of a Combined Cooling, Heating and Power system integrated with wind turbine and compressed air energy storage system. Energy Convers Manag 2017;131:69–78.
DOI: 10.1016/j.enconman.2016.11.003
Google Scholar
[7]
Mehrpooya M, Hemmatabady H, Ahmadi MH. Optimization of performance of Combined Solar Collector-Geothermal Heat Pump Systems to supply thermal load needed for heating greenhouses. Energy Convers Manag 2015;97:382–92.
DOI: 10.1016/j.enconman.2015.03.073
Google Scholar
[8]
Ahmadi MH, Mehrpooya M, Pourfayaz F. Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink. Energy Convers Manag 2016;119:422–34.
DOI: 10.1016/j.enconman.2016.04.062
Google Scholar
[9]
Ahmadi MH, Ahmadi MA, Sadaghiani MS, Ghazvini M, Shahriar S, Alhuyi Nazari M. Ground source heat pump carbon emissions and ground-source heat pump systems for heating and cooling of buildings: A review. Environ Prog Sustain Energy 2017.
DOI: 10.1002/ep.12802
Google Scholar
[10]
MH Jahangir, M. Ghazvini, F. Pourfayaz, MH. Ahmadi, M. Sharifpour J meyer. A Numerical Investigation into Mutual Effects of Soil Thermal and Isothermal Properties on Heat and Moisture Transfer in Unsaturated Soil Applied as Thermal Storage System. Numer Heat Transf Part A Appl 2018.
DOI: 10.1080/10407782.2018.1449518
Google Scholar
[11]
Toklu E. Biomass energy potential and utilization in Turkey. Renew Energy 2017;107:235–44.
Google Scholar
[12]
Klass, D.L. (1998). Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego, CA, USA.
Google Scholar
[13]
Demirbas A. Bioresource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 2001; 42:1357-78.
Google Scholar
[14]
Wang P, Zhan SH, Yu HB, Xue XF, Hong N. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Bioresour Technol 2010; 101:3236-41.
DOI: 10.1016/j.biortech.2009.12.082
Google Scholar
[15]
Guo FQ, Dong YP, Dong L, Jing YZ. An innovative example of herb residues recycling by gasification in a fluidized bed. Waste Manag 2013; 33:825-32.
DOI: 10.1016/j.wasman.2012.12.009
Google Scholar
[16]
Chen WH, Chen JC, Tsai CD, Jiang TL. Transient gasification and syngas formation for coal particles in a fixed-bed reactor. Int J Energ Res 2007; 31:895–911.
DOI: 10.1002/er.1273
Google Scholar
[17]
Chen WH. A simplified model of predicting coal gasification performance in a partial oxidation environment. Int Commun Heat Mass 2007; 34:623–9.
Google Scholar
[18]
Chmielniak T, Sciazko M. Co-gasification of biomass and coal for methanol synthesis. Appl Energ 2003; 74:393–403.
DOI: 10.1016/s0306-2619(02)00184-8
Google Scholar
[19]
Bludowsky T, Agar DW. Thermally integrated bio-syngas-production for biorefineries. Chem Eng Res Des 2009; 87:1328–39.
DOI: 10.1016/j.cherd.2009.03.012
Google Scholar
[20]
Chen WH, Lin BJ, Lee HM, Huang MH. One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity. Appl Energ 2012; 98:92–101.
DOI: 10.1016/j.apenergy.2012.02.082
Google Scholar
[21]
Buragohain B, Mahanta P, Moholkar VS. Biomass gasification for decentralized power generation: the Indian perspective. Renew Sust Energ Rev 2010; 14:73–92.
DOI: 10.1016/j.rser.2009.07.034
Google Scholar
[22]
Sheth PN, Babu BV. Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresource Technol 2009; 100:3127–33.
DOI: 10.1016/j.biortech.2009.01.024
Google Scholar
[23]
Raman P, Ram NK. Design improvements and performance testing of a biomass gasifier based electric power generation system. Biomass Bioenergy 2013; 56:555-71.
DOI: 10.1016/j.biombioe.2013.06.004
Google Scholar
[24]
Calvo LF, Gil MV, Otero M, Mora´n A, Garcıaa AI. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems. Bioresour Technol 2012; 109:206-14.
DOI: 10.1016/j.biortech.2012.01.027
Google Scholar
[25]
Van de steene L, Tagutchou JP, Mermoud F, Martin E, Salvador S. A new experimental continuous fixed bed reactor to characterise wood char gasification. Fuel 2010; 89:3320-9.
DOI: 10.1016/j.fuel.2010.03.035
Google Scholar
[26]
Sheth PN, Babu BV. Production of hydrogen energy through biomass (waste wood) gasification. Int J Hydrogen Energy 2010; 35:10803-10.
DOI: 10.1016/j.ijhydene.2010.03.009
Google Scholar
[27]
Yoon HC, Cooper T, Steinfeld A. Non-catalytic auto thermal gasification of woody biomass. Int J Hydrogen Energy 2011; 36:7852-60.
DOI: 10.1016/j.ijhydene.2011.01.138
Google Scholar
[28]
Horttanainen, M., Saastamoinen, J., Sarkomaa, P., 2002. Operational limits of ignition front propagation against airflow in packed beds of different wood fuels. Energy Fuel 16, 676–686.
DOI: 10.1021/ef010209d
Google Scholar
[29]
Lenis, Y., Osorio, L., Pérez, J., 2013a. Fixed bed gasification of wood species with potential as energy crops in Colombia: effect of the physicochemical properties. Energy Source Part A 35, 1608–1617.
DOI: 10.1080/15567036.2012.704486
Google Scholar
[30]
Lv, P., Yuan, Z., Ma, L., Wu, C., Chen, Y., Zhu, J., 2007. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renewable Energy 32, 2173–2185.
DOI: 10.1016/j.renene.2006.11.010
Google Scholar
[31]
Pinto, F., André, R., Gulyurtlu, I., 2009. Innovation on Biomass Wastes Utilization through Gasification and Co-Gasification. Biomass Gasification Nova Science,New york.
DOI: 10.1016/s0016-2361(01)00164-8
Google Scholar
[32]
Son, Y., Yoon, S., Kim, Y., Lee, J., 2011. Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier. Biomass Bioenergy 35, 4215–4220.
DOI: 10.1016/j.biombioe.2011.07.008
Google Scholar
[33]
Thanapal, S., Annamalai, K., Sweeten, J., Gordillo, G., 2012. Fixed bed gasification of dairy biomass with enriched air mixture. Appl. Energy 97, 525–531.
DOI: 10.1016/j.apenergy.2011.11.072
Google Scholar
[34]
Wander, P., Altafini, C., Barreto, R., 2004. Assessment of a small sawdust gasification unit. Biomass Bioenergy 27, 467–476.
DOI: 10.1016/j.biombioe.2004.04.003
Google Scholar
[35]
Ma ZQ, Zhang YM, Zhang QS, Qu YB, Zhou JB, Qin HF. Design and experimental investigation of a 190 kWe biomass fixed bed gasification and poly-generation pilot plant using a double air stage downdraft approach. Energy 2012; 46:140-7.
DOI: 10.1016/j.energy.2012.09.008
Google Scholar
[36]
Tinaut F, Melgar A, Pe´rez JF, Horrillo A. Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier: an experimental and modelling study. Fuel Process Technol 2008; 89:1076-89.
DOI: 10.1016/j.fuproc.2008.04.010
Google Scholar
[37]
Pe´rez JF, Melgar A, Benjumea PN. Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: an experimental study. Fuel 2012; 96:478-96.
DOI: 10.1016/j.fuel.2012.01.064
Google Scholar
[38]
Z. Li, W. Zhao, G. Zhao, F. Zhang, Q. Zhu, Effect of corn stalk length on combustion characteristics in a fixed bed, Energy and Fuels 22 (2008) 2009-(2014).
DOI: 10.1021/ef700755b
Google Scholar
[39]
E. Girgis, W. Hallett, Wood combustion in an overfeed packed bed, including detailed measurements within the bed, Energy and Fuels 24 (2010) 1584-1591.
DOI: 10.1021/ef901206d
Google Scholar
[40]
R. Johansson, H. Thunman, B. Leckner, Sensitivity analysis of a fixed bed combustion model, Energy and Fuels 21 (2007) 1493-1503.
DOI: 10.1021/ef060500z
Google Scholar
[41]
J. Porteiro, D. Patiño, J. Moran, E. Granada, Study of a fixed-bed biomass combustor: influential parameters on ignition front propagation using parametric analysis, Energy and Fuels 24 (2010) 3890e3897.
DOI: 10.1021/ef100422y
Google Scholar
[42]
J. Porteiro, D. Patiño, J. Collazo, E. Granada, J. Moran, J.L. Miguez, Experimental analysis of the ignition front propagation of several biomass fuels in a fixedbed combustor, Fuel 89 (2010) 26e35.
DOI: 10.1016/j.fuel.2009.01.024
Google Scholar
[43]
Kramreiter R, Url M, Kotik J, Hofbauer H. Experimental investigation of a 125-kW twin-fire fixed bed gasification pilot plant and comparison to the results of a 2 MW combined heat and power plant (CHP). Fuel Process Technol 2008; 89:90-102.
DOI: 10.1016/j.fuproc.2007.08.001
Google Scholar
[44]
I. De Bari, D. Barisano, M. Cardinale, D. Matera, F. Nanna, D. Viggiano, Air gasification of biomass in a downdraft fixed bed: a comparative study of the inorganic and organic products distribution, Energy and Fuels 14 (2000) 889e898.
DOI: 10.1021/ef990243g
Google Scholar
[45]
H. Thunman, B. Leckner, Ignition and propagation of a reaction front in crosscurrent bed combustion of wet biofuels, Fuel 80 (2001) 473e481.
DOI: 10.1016/s0016-2361(00)00127-7
Google Scholar
[46]
S. Dasappa, P.J. Paul, H.S. Mukunda, U. Shrinivasa, Wood-char gasification: experiments and analysis on single particles and packed beds, in: Twenty seventh Symposium (International) on Combustion, The Combustion Institute,1998, pp. 1335e1342.
DOI: 10.1016/s0082-0784(98)80538-9
Google Scholar
[47]
Sharma AK. Experimental study on 75 kWth downdraft (biomass) gasifier system. Renew Energy 2009; 34:1726-33.
Google Scholar
[48]
Erlich, C., Fransson, T., 2011. Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: experimental study. Appl. Energy 88,899–908.
DOI: 10.1016/j.apenergy.2010.08.028
Google Scholar
[49]
Gøbel, B.; Henriksen, U.; Jensen, T.K.; Qvale, B.; Houbak, N. (2007) The development of a computer model for a fixed bed gasifier and its use for optimization and control. Bioresource Technology, 98: 2043–52.
DOI: 10.1016/j.biortech.2006.08.019
Google Scholar
[50]
Ramanan, M.V.; Lakshmanan, E.; Sethumadhavan, R.; Renganarayanan, S. (2008) Performance prediction and validation of equilibrium modelling for gasification of cashew nut shell char. Brazilian Journal of Chemical Engineering, 25: 585-601.
DOI: 10.1590/s0104-66322008000300016
Google Scholar
[51]
Sharma A.Kr. (2008) Equilibrium and kinetic modelling of char reduction reactions in a downdraft biomass gasifier: A comparison. Solar Energy, 52: 918-928.
DOI: 10.1016/j.solener.2008.03.004
Google Scholar
[52]
Zainal, Z.A.; Ali, R.; Quadir, G.; Seetharamu, K.N. (2002) Experimental investigations of a downdraft biomass gasifier. Biomass and Bioenergy, 23: 283–89.
DOI: 10.1016/s0961-9534(02)00059-4
Google Scholar
[53]
Sheng, C.; Azevedo, J.L.T. (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 28: 499-507.
DOI: 10.1016/j.biombioe.2004.11.008
Google Scholar
[54]
Channiwala, S. A.; Parikh, P. P. (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81: 1051-63.
DOI: 10.1016/s0016-2361(01)00131-4
Google Scholar
[55]
Baratieri, M.; Baggio, P.; Fiori, L.; Grigiante, M. (2008) Biomass as an energy source: Thermodynamic constrains on the performance of the conversion process. Bioresource Technology, 99: 7063-73.
DOI: 10.1016/j.biortech.2008.01.006
Google Scholar
[56]
Fock, F.; Thomsen, K. (1999) Modellering af totrinsforgasser, ET-EP 99-10A. Institut for Energiteknik, Technical University of Denmark, Denmark.
Google Scholar
[57]
Jarungthammachote, S.; Dutta, A. (2007) Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy, 32: 1660-69.
DOI: 10.1016/j.energy.2007.01.010
Google Scholar
[58]
Bentzen, J.D.; Gøbel, B. (1995) Dynamisk model af totrinsforgasningsprocessen, PE 95–13, Master Thesis, Department of Mechanical Engineering, Technical University of Denmark, Denmark.
Google Scholar
[59]
Policy, Technical and Environmental Considerations. Life After Fresh Kills: Moving Beyond New York City's Current Waste Management Plan. December 1, (2001).
Google Scholar
[60]
J. Zhong, Syngas production via biomass self-moisture chemical looping gasification, Biomass and Bioenergy. 104 (2017) 1–7.
DOI: 10.1016/j.biombioe.2017.03.020
Google Scholar
[61]
Deshun Xu, Douglas R. Tree, The effects of syngas impurities on syngas fermentation to liquid fuels, Biomass and Bioenergy. 35 (2011) 2690–2696.
DOI: 10.1016/j.biombioe.2011.03.005
Google Scholar
[62]
Shiyi Chen, Zhao Sun, Qi Zhang, Jun Hu, Steam gasification of sewage sludge with CaO as CO2 sorbent for hydrogen-rich syngas production, Biomass and Bioenergy. 107 (2017) 52–62.
DOI: 10.1016/j.biombioe.2017.09.009
Google Scholar
[63]
Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR. 1 Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renew Sust Energy Rev 2010; 14:2852-62.
DOI: 10.1016/j.rser.2010.07.026
Google Scholar
[64]
Gil J, Aznar MP, Caballero MA, Francés E, Corella J. Biomass gasification in fluidized bed at pilot scale with steam-oxygen mixtures. Product distribution for very different operating conditions. Energy Fuel 1997; 11:1109-18.
DOI: 10.1021/ef9602335
Google Scholar