Energetic Study of Gasification System for Bio-Waste as Renewable Energy Resource: Case Study

Article Preview

Abstract:

The expenses, which caused by pollution and limited fossil resources, have convinced scientists to concentrate on renewable resources such as biological waste. Conversion of bio-waste to syntheses gas produces higher heating values in comparison to conventional bioenergy production methods. To produce energy from bio waste, it is important to study on existing technology and using CHP and gas turbines. In this paper a plan for producing electricity and heat at the same time by using bio waste has been proposed. This plan provides a method to produce hybrid gas (combined gas) by using solid bio-waste of Tehran in two forms of wet and dry as a renewable energy resource and steam in a fixed bed gas reactor. This gas is a combination of Hydrogen, Carbon monoxide, Carbon dioxide Water and some amount of Methane. Selected temperature and pressure for the reactor respectively is1900 [˚F] and 390 [Psi]. As indicated in the results, the best air and steam combination entering fixed bed reactor among 60 different combinations for dry waste is 0.2% of entering fuel volume for steam 0.25% of entering fuel volume for air heating value for this combination is 6471 [BTU/lb]. Furthermore, for the steam volumes of 1.5% to 0.9%, the percentage of H2 in the syngas increases by enhancing the volume of air content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-60

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ahmadi MH, Sayyaadi H, Dehghani S, Hosseinzade H. Designing a solar powered Stirling heat engine based on multiple criteria: Maximized thermal efficiency and power. Energy Convers Manag 2013;75:282–91.

DOI: 10.1016/j.enconman.2013.06.025

Google Scholar

[2] Ahmadi MH, Sayyaadi H, Mohammadi AH, Barranco-Jimenez MA. Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm. Energy Convers Manag 2013; 73: 370–80.

DOI: 10.1016/j.enconman.2013.05.031

Google Scholar

[3] Ashouri M, Khoshkar Vandani AM, Mehrpooya M, Ahmadi MH, Abdollahpour A. Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector. Energy Convers Manag 2015;105:1328–39.

DOI: 10.1016/j.enconman.2015.09.015

Google Scholar

[4] Mohammadi A, Ahmadi MH, Bidi M, Ghazvini M, Ming T. Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Reports 2018;4:243–51.

DOI: 10.1016/j.egyr.2018.03.001

Google Scholar

[5] Mohammadnezami M, Ehyaei M, Rosen M, Ahmadi M. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System. Sustainability 2015;7:2554–69.

DOI: 10.3390/su7032554

Google Scholar

[6] Mohammadi A, Ahmadi MH, Bidi M, Joda F, Valero A, Uson S. Exergy analysis of a Combined Cooling, Heating and Power system integrated with wind turbine and compressed air energy storage system. Energy Convers Manag 2017;131:69–78.

DOI: 10.1016/j.enconman.2016.11.003

Google Scholar

[7] Mehrpooya M, Hemmatabady H, Ahmadi MH. Optimization of performance of Combined Solar Collector-Geothermal Heat Pump Systems to supply thermal load needed for heating greenhouses. Energy Convers Manag 2015;97:382–92.

DOI: 10.1016/j.enconman.2015.03.073

Google Scholar

[8] Ahmadi MH, Mehrpooya M, Pourfayaz F. Exergoeconomic analysis and multi objective optimization of performance of a Carbon dioxide power cycle driven by geothermal energy with liquefied natural gas as its heat sink. Energy Convers Manag 2016;119:422–34.

DOI: 10.1016/j.enconman.2016.04.062

Google Scholar

[9] Ahmadi MH, Ahmadi MA, Sadaghiani MS, Ghazvini M, Shahriar S, Alhuyi Nazari M. Ground source heat pump carbon emissions and ground-source heat pump systems for heating and cooling of buildings: A review. Environ Prog Sustain Energy 2017.

DOI: 10.1002/ep.12802

Google Scholar

[10] MH Jahangir, M. Ghazvini, F. Pourfayaz, MH. Ahmadi, M. Sharifpour J meyer. A Numerical Investigation into Mutual Effects of Soil Thermal and Isothermal Properties on Heat and Moisture Transfer in Unsaturated Soil Applied as Thermal Storage System. Numer Heat Transf Part A Appl 2018.

DOI: 10.1080/10407782.2018.1449518

Google Scholar

[11] Toklu E. Biomass energy potential and utilization in Turkey. Renew Energy 2017;107:235–44.

Google Scholar

[12] Klass, D.L. (1998). Biomass for renewable energy, fuels, and chemicals. Academic Press, San‏ Diego, CA, USA.

Google Scholar

[13] Demirbas A. Bioresource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 2001; 42:1357-78.

Google Scholar

[14] Wang P, Zhan SH, Yu HB, Xue XF, Hong N. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Bioresour Technol 2010; 101:3236-41.

DOI: 10.1016/j.biortech.2009.12.082

Google Scholar

[15] Guo FQ, Dong YP, Dong L, Jing YZ. An innovative example of herb residues recycling by gasification in a fluidized bed. Waste Manag 2013; 33:825-32.

DOI: 10.1016/j.wasman.2012.12.009

Google Scholar

[16] Chen WH, Chen JC, Tsai CD, Jiang TL. Transient gasification and syngas formation for coal particles in a fixed-bed reactor. Int J Energ Res 2007; 31:895–911.

DOI: 10.1002/er.1273

Google Scholar

[17] Chen WH. A simplified model of predicting coal gasification performance in a partial oxidation environment. Int Commun Heat Mass 2007; 34:623–9.

Google Scholar

[18] Chmielniak T, Sciazko M. Co-gasification of biomass and coal for methanol synthesis. Appl Energ 2003; 74:393–403.

DOI: 10.1016/s0306-2619(02)00184-8

Google Scholar

[19] Bludowsky T, Agar DW. Thermally integrated bio-syngas-production for biorefineries. Chem Eng Res Des 2009; 87:1328–39.

DOI: 10.1016/j.cherd.2009.03.012

Google Scholar

[20] Chen WH, Lin BJ, Lee HM, Huang MH. One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity. Appl Energ 2012; 98:92–101.

DOI: 10.1016/j.apenergy.2012.02.082

Google Scholar

[21] Buragohain B, Mahanta P, Moholkar VS. Biomass gasification for decentralized power generation: the Indian perspective. Renew Sust Energ Rev 2010; 14:73–92.

DOI: 10.1016/j.rser.2009.07.034

Google Scholar

[22] Sheth PN, Babu BV. Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresource Technol 2009; 100:3127–33.

DOI: 10.1016/j.biortech.2009.01.024

Google Scholar

[23] Raman P, Ram NK. Design improvements and performance testing of a biomass gasifier based electric power generation system. Biomass Bioenergy 2013; 56:555-71.

DOI: 10.1016/j.biombioe.2013.06.004

Google Scholar

[24] Calvo LF, Gil MV, Otero M, Mora´n A, Garcıaa AI. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems. Bioresour Technol 2012; 109:206-14.

DOI: 10.1016/j.biortech.2012.01.027

Google Scholar

[25] Van de steene L, Tagutchou JP, Mermoud F, Martin E, Salvador S. A new experimental continuous fixed bed reactor to characterise wood char gasification. Fuel 2010; 89:3320-9.

DOI: 10.1016/j.fuel.2010.03.035

Google Scholar

[26] Sheth PN, Babu BV. Production of hydrogen energy through biomass (waste wood) gasification. Int J Hydrogen Energy 2010; 35:10803-10.

DOI: 10.1016/j.ijhydene.2010.03.009

Google Scholar

[27] Yoon HC, Cooper T, Steinfeld A. Non-catalytic auto thermal gasification of woody biomass. Int J Hydrogen Energy 2011; 36:7852-60.

DOI: 10.1016/j.ijhydene.2011.01.138

Google Scholar

[28] Horttanainen, M., Saastamoinen, J., Sarkomaa, P., 2002. Operational limits of ignition front propagation against airflow in packed beds of different wood fuels. Energy Fuel 16, 676–686.

DOI: 10.1021/ef010209d

Google Scholar

[29] Lenis, Y., Osorio, L., Pérez, J., 2013a. Fixed bed gasification of wood species with potential as energy crops in Colombia: effect of the physicochemical properties. Energy Source Part A 35, 1608–1617.

DOI: 10.1080/15567036.2012.704486

Google Scholar

[30] Lv, P., Yuan, Z., Ma, L., Wu, C., Chen, Y., Zhu, J., 2007. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renewable Energy 32, 2173–2185.

DOI: 10.1016/j.renene.2006.11.010

Google Scholar

[31] Pinto, F., André, R., Gulyurtlu, I., 2009. Innovation on Biomass Wastes Utilization through Gasification and Co-Gasification. Biomass Gasification Nova Science,New york.

DOI: 10.1016/s0016-2361(01)00164-8

Google Scholar

[32] Son, Y., Yoon, S., Kim, Y., Lee, J., 2011. Gasification and power generation characteristics of woody biomass utilizing a downdraft gasifier. Biomass Bioenergy 35, 4215–4220.

DOI: 10.1016/j.biombioe.2011.07.008

Google Scholar

[33] Thanapal, S., Annamalai, K., Sweeten, J., Gordillo, G., 2012. Fixed bed gasification of dairy biomass with enriched air mixture. Appl. Energy 97, 525–531.

DOI: 10.1016/j.apenergy.2011.11.072

Google Scholar

[34] Wander, P., Altafini, C., Barreto, R., 2004. Assessment of a small sawdust gasification unit. Biomass Bioenergy 27, 467–476.

DOI: 10.1016/j.biombioe.2004.04.003

Google Scholar

[35] Ma ZQ, Zhang YM, Zhang QS, Qu YB, Zhou JB, Qin HF. Design and experimental investigation of a 190 kWe biomass fixed bed gasification and poly-generation pilot plant using a double air stage downdraft approach. Energy 2012; 46:140-7.

DOI: 10.1016/j.energy.2012.09.008

Google Scholar

[36] Tinaut F, Melgar A, Pe´rez JF, Horrillo A. Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier: an experimental and modelling study. Fuel Process Technol 2008; 89:1076-89.

DOI: 10.1016/j.fuproc.2008.04.010

Google Scholar

[37] Pe´rez JF, Melgar A, Benjumea PN. Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: an experimental study. Fuel 2012; 96:478-96.

DOI: 10.1016/j.fuel.2012.01.064

Google Scholar

[38] Z. Li, W. Zhao, G. Zhao, F. Zhang, Q. Zhu, Effect of corn stalk length on combustion characteristics in a fixed bed, Energy and Fuels 22 (2008) 2009-(2014).

DOI: 10.1021/ef700755b

Google Scholar

[39] E. Girgis, W. Hallett, Wood combustion in an overfeed packed bed, including detailed measurements within the bed, Energy and Fuels 24 (2010) 1584-1591.

DOI: 10.1021/ef901206d

Google Scholar

[40] R. Johansson, H. Thunman, B. Leckner, Sensitivity analysis of a fixed bed combustion model, Energy and Fuels 21 (2007) 1493-1503.

DOI: 10.1021/ef060500z

Google Scholar

[41] J. Porteiro, D. Patiño, J. Moran, E. Granada, Study of a fixed-bed biomass combustor: influential parameters on ignition front propagation using parametric analysis, Energy and Fuels 24 (2010) 3890e3897.

DOI: 10.1021/ef100422y

Google Scholar

[42] J. Porteiro, D. Patiño, J. Collazo, E. Granada, J. Moran, J.L. Miguez, Experimental analysis of the ignition front propagation of several biomass fuels in a fixedbed combustor, Fuel 89 (2010) 26e35.

DOI: 10.1016/j.fuel.2009.01.024

Google Scholar

[43] Kramreiter R, Url M, Kotik J, Hofbauer H. Experimental investigation of a 125-kW twin-fire fixed bed gasification pilot plant and comparison to the results of a 2 MW combined heat and power plant (CHP). Fuel Process Technol 2008; 89:90-102.

DOI: 10.1016/j.fuproc.2007.08.001

Google Scholar

[44] I. De Bari, D. Barisano, M. Cardinale, D. Matera, F. Nanna, D. Viggiano, Air gasification of biomass in a downdraft fixed bed: a comparative study of the inorganic and organic products distribution, Energy and Fuels 14 (2000) 889e898.

DOI: 10.1021/ef990243g

Google Scholar

[45] H. Thunman, B. Leckner, Ignition and propagation of a reaction front in crosscurrent bed combustion of wet biofuels, Fuel 80 (2001) 473e481.

DOI: 10.1016/s0016-2361(00)00127-7

Google Scholar

[46] S. Dasappa, P.J. Paul, H.S. Mukunda, U. Shrinivasa, Wood-char gasification: experiments and analysis on single particles and packed beds, in: Twenty seventh Symposium (International) on Combustion, The Combustion Institute,1998, pp. 1335e1342.

DOI: 10.1016/s0082-0784(98)80538-9

Google Scholar

[47] Sharma AK. Experimental study on 75 kWth downdraft (biomass) gasifier system. Renew Energy 2009; 34:1726-33.

Google Scholar

[48] Erlich, C., Fransson, T., 2011. Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: experimental study. Appl. Energy 88,899–908.

DOI: 10.1016/j.apenergy.2010.08.028

Google Scholar

[49] Gøbel, B.; Henriksen, U.; Jensen, T.K.; Qvale, B.; Houbak, N. (2007) The development of a computer model for a fixed bed gasifier and its use for optimization and control. Bioresource Technology, 98: 2043–52.

DOI: 10.1016/j.biortech.2006.08.019

Google Scholar

[50] Ramanan, M.V.; Lakshmanan, E.; Sethumadhavan, R.; Renganarayanan, S. (2008) Performance prediction and validation of equilibrium modelling for gasification of cashew nut shell char. Brazilian Journal of Chemical Engineering, 25: 585-601.

DOI: 10.1590/s0104-66322008000300016

Google Scholar

[51] Sharma A.Kr. (2008) Equilibrium and kinetic modelling of char reduction reactions in a downdraft biomass gasifier: A comparison. Solar Energy, 52: 918-928.

DOI: 10.1016/j.solener.2008.03.004

Google Scholar

[52] Zainal, Z.A.; Ali, R.; Quadir, G.; Seetharamu, K.N. (2002) Experimental investigations of a downdraft biomass gasifier. Biomass and Bioenergy, 23: 283–89.

DOI: 10.1016/s0961-9534(02)00059-4

Google Scholar

[53] Sheng, C.; Azevedo, J.L.T. (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and Bioenergy, 28: 499-507.

DOI: 10.1016/j.biombioe.2004.11.008

Google Scholar

[54] Channiwala, S. A.; Parikh, P. P. (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81: 1051-63.

DOI: 10.1016/s0016-2361(01)00131-4

Google Scholar

[55] Baratieri, M.; Baggio, P.; Fiori, L.; Grigiante, M. (2008) Biomass as an energy source: Thermodynamic constrains on the performance of the conversion process. Bioresource Technology, 99: 7063-73.

DOI: 10.1016/j.biortech.2008.01.006

Google Scholar

[56] Fock, F.; Thomsen, K. (1999) Modellering af totrinsforgasser, ET-EP 99-10A. Institut for Energiteknik, Technical University of Denmark, Denmark.

Google Scholar

[57] Jarungthammachote, S.; Dutta, A. (2007) Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy, 32: 1660-69.

DOI: 10.1016/j.energy.2007.01.010

Google Scholar

[58] Bentzen, J.D.; Gøbel, B. (1995) Dynamisk model af totrinsforgasningsprocessen, PE 95–13, Master Thesis, Department of Mechanical Engineering, Technical University of Denmark, Denmark.

Google Scholar

[59] Policy, Technical and Environmental Considerations. Life After Fresh Kills: Moving Beyond New York City's Current Waste Management Plan. December 1, (2001).

Google Scholar

[60] J. Zhong, Syngas production via biomass self-moisture chemical looping gasification, Biomass and Bioenergy. 104 (2017) 1–7.

DOI: 10.1016/j.biombioe.2017.03.020

Google Scholar

[61] Deshun Xu, Douglas R. Tree, The effects of syngas impurities on syngas fermentation to liquid fuels, Biomass and Bioenergy. 35 (2011) 2690–2696.

DOI: 10.1016/j.biombioe.2011.03.005

Google Scholar

[62] Shiyi Chen, Zhao Sun, Qi Zhang, Jun Hu, Steam gasification of sewage sludge with CaO as CO2 sorbent for hydrogen-rich syngas production, Biomass and Bioenergy. 107 (2017) 52–62.

DOI: 10.1016/j.biombioe.2017.09.009

Google Scholar

[63] Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR. 1 Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review. Renew Sust Energy Rev 2010; 14:2852-62.

DOI: 10.1016/j.rser.2010.07.026

Google Scholar

[64] Gil J, Aznar MP, Caballero MA, Francés E, Corella J. Biomass gasification in fluidized bed at pilot scale with steam-oxygen mixtures. Product distribution for very different operating conditions. Energy Fuel 1997; 11:1109-18.

DOI: 10.1021/ef9602335

Google Scholar