Effect of the Deformation and Heat Treatment on the Microstructural Evolution and Mechanical Properties of Mg-4%Y Alloy

Article Preview

Abstract:

This study aimed to evaluate the effects of extrusion process and subsequentheat-treatment on microstructural evolution and mechanical properties of Mg-4%Y alloy. Theresults showed that the dynamic recrystallization occurred during extrusion, the microstructure istiny equiaxial grains, the shearing stripes and parallel streamlines which distribute along theextrusion direction are especially obvious. The tensile curve has obvious yield phenomenon. Afterannealing, parallel streamlines disappear, the yield phenomenon of tensile curve eliminates, theyield strength(σ0.2) and the tensile strength(σb) decrease, the plasticity increases. The underneathmechanism for mechanical properties can be ascribed to the weak pining effect of second-phaseparticles on the movement of dislocation and release of the pile-up dislocations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-121

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Mukong, S. Jianxin, L. Xinchao, Progress in Research and Application of Cast Magnesium Alloys. Nonferrous Metal Eng. 02 (2012) 56-59.

Google Scholar

[2] L. Dan, Application and Development Prospect of magnesium Alloy Materials. Tech. Inform. 29 (2012) 74.

Google Scholar

[3] S. Q. Tang, J. X. Zhou et al. Morphology modification of Mg2Si by Sr addition in Mg-4%Si alloy, Trans. Nonferrous Met. Soc. China, 21(9) (2011) 1932-1936.

DOI: 10.1016/s1003-6326(11)60952-7

Google Scholar

[4] C. H. Zhang, X. Huang, M. Zhang, L. Gao, R. Wu, Electrochemical characterization of the corrosion of a Mg–Li Alloy, Mater. Lett. 62(14) (2008) 2177-2180.

DOI: 10.1016/j.matlet.2007.11.044

Google Scholar

[5] Y. W. Song, D. Y. Shan, R. S. Chen, E. H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corros. Sci. 51(5) (2009) 1087-1094.

DOI: 10.1016/j.corsci.2009.03.011

Google Scholar

[6] Y. Zeng, B. Jiang, D. H. Huang, J. H. Dai, F. S. Pan, Effect of Ca addition on grain refinement of Mg–9Li–1Al alloy, J. Magnes. Alloys, 1(4) (2013) 297-302.

DOI: 10.1016/j.jma.2013.12.002

Google Scholar

[7] C. Q. Li, D. K. Xu, T. T. Zu, E. H. Han, L. Wang, Effect of temperature on the mechanical abnormity of the quasicrystal reinforced Mg-4%Li-6%Zn-1.2%Y alloy, J. Magnesium and Alloys, 3(2) (2015) 106-111.

DOI: 10.1016/j.jma.2015.02.003

Google Scholar

[8] C. Zhang, D. Ma, K.-S. Wu, H.-B. Cao et al. Microstructure and microsegregation in directionally solidified Mg- 4Al alloy, Intermetallics, 15(10) (2007) 1395-1400.

DOI: 10.1016/j.intermet.2007.01.009

Google Scholar

[9] Q. Z. Peng, H. T. Zhou, F. H. Zhong, H. B. Ding, X. Zhou, R. R. Liu, T. Xie, Y. Peng, Effects of homogenization treatment on the microstructure and mechanical properties of Mg−8Li−3Al−Y alloy. Materials & Design, 66 (2015) 566-574.

DOI: 10.1016/j.matdes.2014.03.046

Google Scholar

[10] H. W. Dong, F. Pan, J. Bin, Z. Ying, Evolution of microstructure and mechanical properties of a duplex Mg-Li alloy under extrusion with an increasing ratio, Mater. Des. 57 (2014) 121-127.

DOI: 10.1016/j.matdes.2013.12.055

Google Scholar

[11] M. Yamasaki, S. Izumi, Y. Kawamura, Effects of Cooling Rate and Component on the Microstructure and Mechanical Properties of Mg–Zn–Y Alloys. Appl. Surf. Sci. 257 (2011) 8258-8267.

DOI: 10.1016/j.apsusc.2011.01.046

Google Scholar

[12] C. Zhao-yun, D. Zi-chao, Y. Chun, T. Rui, Microstructure and properties of Mg−5.21Li−3.44Zn−0.32Y−0.01Zr alloy. Mater. Sci. Eng. A, 559 (2013) 651−654.

Google Scholar

[13] H. B. Ding, Q. Liu, H. T. Zhou, X. Zhou, A. Atrens, Effect of thermal- mechanical processing on microstructure and mechanical properties of duplex-phase Mg−8Li−3Al−0.4Y alloy, Trans. Nonferrous Met. Soc. China 27 (2017) 2587-2597.

DOI: 10.1016/s1003-6326(17)60286-3

Google Scholar

[14] C. Q. Li, D. K. Xu, T. T. Zu, E. H. Han, L. Wang, Effect of temperature on the mechanical abnormity of the quasicrystal reinforced Mg-4%Li-6%Zn-1.2%Y alloy, J. Magnesium and Alloys, 3(2) (2015) 106-111.

DOI: 10.1016/j.jma.2015.02.003

Google Scholar

[15] H. Pan, Y. Ren, H. Fu, H. Zhao, L. Wang, X. Meng, G. Qin, Recent developments in rare-earth free wrought magnesium alloys having high strength: A review, J. Alloys Comp. 663 (2016) 321-331.

DOI: 10.1016/j.jallcom.2015.12.057

Google Scholar

[16] D. Q. Zhao, Y. S. Yang, J. X. Zhou, Y. Liu, S. Q. Tang, Constitutive modeling for dynamic recrystallization kinetics of Mg−4Zn−2Al−2Sn alloy, Trans. Nonferrous Met. Soc. China 28(2) (2018) 340-347.

DOI: 10.1016/s1003-6326(18)64667-9

Google Scholar

[17] J. S. Kyong, J. K. Kim, M. J. Lee, Y. B. Park, W. T. Kim, D. H. Kim, Texture modification by addition of Ca in Mg−Zn−Y alloy. Materials Transactions, 53(5) (2012) 991-994.

DOI: 10.2320/matertrans.m2011401

Google Scholar

[18] J. Grobner, A. Kozlov, X. Y. Fang, J. Geng, J. F. Nie, R. Schmid-Fetzer, Phase equilibria and transformations in ternary Mg-rich Mg−Y−Zn alloys, Acta Materialia, 60(17) (2012) 5948-5962.

DOI: 10.1016/j.actamat.2012.05.035

Google Scholar

[19] M. B. Yang, D. Y. Wu, M. D. Hou, F. S. Pan, As-cast microstructures and mechanical properties of Mg−4Zn−xY−1Ca (x=1.0, 1.5, 2.0, 3.0) magnesium alloys, Trans. Nonferrous Met. Soc. China 25 (2015) 721-731.

DOI: 10.1016/s1003-6326(15)63657-3

Google Scholar