Analysis of Geometric Variation of Three Degrees of Freedom through the Constructal Design Method for a Oscillating Water Column Device with Double Hidropneumatic Chamber

Article Preview

Abstract:

This paper presents a biphasic two-dimensional numerical study of sea wave energy converters with operating principle being Oscillating Water Column (CAO) devices with two couples chambers. For the study of the geometric optimization, the Constructal Design method is applied in association with the exhaustive search method to determine the geometric arrangement that leads to the greatest hydropneumatic power available. The objective function is the maximization of hydropneumatic power converted by the device. The constraints of the problem are the inflow volumes of the hydropneumatic chamber (VE1, VE2), the total volumes (VT1, VT2) and the thicknesses of the device columns (e1, e3). The degrees of freedom analyzed were H1/L1 (ratio between height and length of the hydropneumatic chamber of the first device), H2/L2 (ratio between height and length of the hydropneumatic chamber of the second device), H2 (height of the column dividing the two devices) and e2 (thickness of the column dividing the devices). In the present work the degree of freedom H6 (depth of immersion of the device) is kept constant and equal to H6 = 9.86 m. The Finite Volume Method (FVM) was used in the numerical solution of the equations employed. For the treatment of the interaction between the air and water phases, the Volume of Fluid (VOF) method was applied. The results show that the maximum hydropneumatic power available was 5715.2 W obtained for degrees of freedom H1/L1 = H2/L2 = 0.2613 and e2 = 2.22 m. The case of lower performance has a power value equal to 4818.5 W with degrees of freedom equal to H1/L1 = H2/L2 = 0.2613 and e2 = 0.1 m.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

22-31

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. H. Strahler, A. N. Strahler, Modern Physical Geography, first ed., John Wiley and Sons, New York, (1992).

Google Scholar

[2] A. Tolmasquim, Energia Renovável Hidraulica, Biomassa, Eólica, Solar, Oceânica, first ed., Interciência, Rio de Janeiro, Brazil, (2016).

Google Scholar

[3] T. V. Heath, A review of Oscillating Water Columns, Journal Philosophical Transaction of Royal Society. 370 (2012) 235-245.

Google Scholar

[4] M. N. Gomes, Constructal Design de Dispositivos Conversores de Energia das Ondas do Mar em Energia Elétrica do Tipo Coluna de Água Oscilante, Doctoral Thesis, PROMEC/UFRGS, Porto Alegre, (2014).

DOI: 10.14808/sci.plena.2017.049915

Google Scholar

[5] Y. T. B. Lima, L. A. O. Rocha, M. N. Gomes, L. A. Isoldi, E. D. Santos, Numerical evaluation of hydropneumatic power for two oscillating water column (OWC) devices coupled using constructal design, Proceeding of the XXXVIII Iberian Latin American Congress on Computational Methods in Engineering, Santa Catarina, Brazil, (2017).

DOI: 10.20906/cps/cilamce2017-0231

Google Scholar

[6] M. N. Gomes, M. J. Deus, E. D. Santos, L. A. Isoldi, L. A. O. Rocha, The choise of geometric constrains value applied in the constructal design of oscillating water column device, Proceeding of the XXXVIII Iberian Latin American Congress on Computational Methods in Engineering, Santa Catarina, Brazil, (2017).

DOI: 10.20906/cps/cilamce2017-0547

Google Scholar

[7] A. Bejan, S. Lorente, Design with Constructal Theory, first ed., Wiley, USA, (2008).

Google Scholar

[8] A. Bejan, J. Zane, Design in Nature, first ed., Doubleday, USA, (2012).

Google Scholar

[9] R. C. Lisboa, P. R. F. Teixeira, E. Didier. Regular and Irregular Wave Propagation Analysis in a Flume with Numerical Beach Using a Navier-Stokes Based Model, Defect and Diffusion Forum. 327 (2016) 81-90.

DOI: 10.4028/www.scientific.net/ddf.372.81

Google Scholar

[10] K. O. Connell, F. Thiebaut, G. Kelly, A. Cashman, Development of a free heaving OWC model with nonlinear PTO interaction, Renewable Energy. 177 (2018) 108-115.

DOI: 10.1016/j.renene.2017.10.027

Google Scholar

[11] B. Drew, A. Plummer, M. N. Sahinkaya, A review of wave energy converter thechnology, SAGE journals. 223 (2016) 887-902.

Google Scholar

[12] J, Cruz, A. Sarmento, Energia das Ondas: Introdução aos Aspectos Tecnológicos, Econômicos e Ambientais, first ed., Instituto do Ambiente, Amadora, (2004).

Google Scholar

[13] P. R. F. Teixeira, D. P. Davyt, E. Didier, R. Ramalhais, Numerical Simulation of na Oscillating Water Column Devices Using a Code Base on Navier-Stokes Equation, Energy. 61 (2013) 513-530.

DOI: 10.1016/j.energy.2013.08.062

Google Scholar

[14] D. J. Mavripilis, Unstructured Drid Techniques, Annual Reviews Fluid Mechanics. 29 (1997) 473-514.

Google Scholar

[15] T. G. Barreiro, Estudo da Interação de uma Onda Monocromática com um Conversor de Energia, Masters Dissertation, Ocean Engineering/FURG, Rio Grande, (2009).

Google Scholar

[16] C. T. Hirth, B. D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics. 39 (1981) 201-225.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[17] A. J. Srinivan, K. Salazar, Modeling the disintegration of modulated liquid jets using volume of fluid (VOF) methodology, Applied Mathematical Modeling. 35 (2011) 3710-3730.

DOI: 10.1016/j.apm.2011.01.040

Google Scholar

[18] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, second ed., McGraw-Hill, USA, (1980).

Google Scholar

[19] H. K. Versteeg, W. Malalasekera, Na INtroduction to Computational Fluid Dynamics – The Finite Volumn Method, first Ed., Person, England, (2007).

Google Scholar

[20] A. E. Marjani, F. Castro, M. Behaji, B. Filali, 3D Unsteady Flow Simulation in OWC Wave Converter Plant, Proceeding of International Conference on Renewable Energy and Power Quality, Mallorca, Espanha, (2006).

DOI: 10.24084/repqj04.452

Google Scholar

[21] N. Dizadji, S. E. Sajadian, Modeling and optimization of the chambre of OWC system, Energy. 36 (2011) 2360-2366.

DOI: 10.1016/j.energy.2011.01.010

Google Scholar