[1]
IPCC, Climate change 2014: Synthesis report. Contribution of working groups I, II and III, in: R.K. Pachauri, L.A. Meyer (Eds.), Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, (2014).
DOI: 10.1017/cbo9781107415416
Google Scholar
[2]
R. Weisse, D. Bellafioreb, M. Menéndez, F. Méndez, R.J. Nicholls, G. Umgiesser, P. Willemse, Changing extreme sea levels along European coasts. Coast. Eng., 87 (2014), 4-14.
DOI: 10.1016/j.coastaleng.2013.10.017
Google Scholar
[3]
J.A. Lowe, J.M. Gregory, The effects of climate change on storm surges around the United Kingdom, Phil. Trans. Math., Phys. and Eng. Sciences, 363 (2005) 1313-1328.
DOI: 10.1098/rsta.2005.1570
Google Scholar
[4]
H.F. Burcharth, T.L. Andersen, J.L. Lara, Upgrade of coastal defence structures against increased loadings caused by climate change: A first methodological approach, Coast. Eng. 87 (2014) 112-121.
DOI: 10.1016/j.coastaleng.2013.12.006
Google Scholar
[5]
J.Q.H. Nørgaard, T. Lykke Andersen, H.F. Burcharth, G.J. Steendam, Analysis of overtopping flow on sea dikes in oblique and short-crested waves, Coast. Eng. 76 (2013), 43–54.
DOI: 10.1016/j.coastaleng.2013.01.012
Google Scholar
[6]
M.R.A. Van Gent, Oblique wave attack on rubble mound breakwaters, Coast. Eng., 88 (2014) 43-54.
DOI: 10.1016/j.coastaleng.2014.02.002
Google Scholar
[7]
H. Mase, T. Tamada, T. Yasuda, T.S. Hedges, M.T. Reis, Wave runup and overtopping at seawalls built on land and in very shallow water, J. Waterway, Port, Coast., and Ocean Eng., 139 (2013) 346-357.
DOI: 10.1061/(asce)ww.1943-5460.0000199
Google Scholar
[8]
B. Hofland, E. Diamentidou, P. Van Steeg, P. Meys, Wave runup and wave overtopping measurements using a laser scanner, Coast. Eng., 106 (2015) 20-29.
DOI: 10.1016/j.coastaleng.2015.09.003
Google Scholar
[9]
H. Mase, T. Yasuda, M.T. Reis, H. Karunarathna, J.-A. Yang, Stability formula and failure probability analysis of wave-dissipating blocks considering wave breaking, J. of Ocean Eng. and Marine Energy, 1 (2015), 45-54.
DOI: 10.1007/s40722-014-0004-0
Google Scholar
[10]
B. Hofland, M. Disco, M.R.A. Van Gent, Damage characterization of rubble mound roundheads. CoastLab2014, Varna, (2014).
Google Scholar
[11]
J.M. Courela, R.F. Carvalho, R. Lemos, J. Fortes, J. Leandro, Rubble-mound breakwater armour units displacement analysis by means of digital images processing methods in scale models, Proc. 2nd IWHS: Data Validation, IAHR, Coimbra, May, (2015).
Google Scholar
[12]
F. Pedro, M. Bastos, R. Lemos, C. Fortes, J.A. Santos, Toe berm damage progression analysis using a stereophotogrammetric survey technique, Proc. 7th SCACR - Int. Short Course/Conf. on Applied Coastal Research, Florence, (2015).
Google Scholar
[13]
I. Puente, J. Sande, H. González-Jorge, E. Peña, E. Maciñeira, J. Martínez-Sánchez, P. Arias, Novel image analysis approach to the terrestrial LiDAR monitoring of damage in rubble mound breakwaters, Ocean Eng. 91 (2014) 273-280.
DOI: 10.1016/j.oceaneng.2014.09.011
Google Scholar
[14]
O. Gronz, P.H. Hiller, S. Wirtz, J.B. Ries, Smartstones: A small 9-axis sensor implanted in stones to track their movements, Catena, 142 (2016) 245-251.
DOI: 10.1016/j.catena.2016.03.030
Google Scholar