Analysis of Forces on a Submarine Outfall by a RANS-VoF Numerical Wave Tank

Article Preview

Abstract:

Knowledge of forces due to the action of waves on submarine outfalls composed by a pipe and stabilizing concrete weights, considering the wave propagation direction to the outfalls, is essential to their design. 3D numerical models based on RANS-VoF (Reynolds-Average-Navier-Stokes Volume-of-Fluid) are able to estimate forces on the pipe and weights. The present study aims to simulate a submarine outfall with stabilizing concrete weights at 1:15 scale which was previously tested in the 3D Shallow Water Basin at the Danish Hydraulics Institute (DHI) to analyse the influence of the direction of the incident wave and the distance from the pipe to the bottom on the outfall forces. In this study, numerical results are compared with experimental ones for waves with four different amplitudes and with wave incidence perpendicular to the outfall. The use of k-ω SST turbulence model led to good agreement between numerical drag and lift forces and experimental ones, with a mean difference of 8.9 and 7.6%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-59

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Jarno-Druaux, A. Sakout, E. Lambert, Interference between a circular cylinder and a plane wall under waves, Journal of Fluids and Structures 9 (1995) 215-230.

DOI: 10.1006/jfls.1995.1011

Google Scholar

[2] B.M. Sumer, J. Fredsøe, Hydrodynamics around cylindrical structures (Revised edition), Advanced Series on Ocean Engineering, 26, World Scientific, Singapore (2006).

DOI: 10.1142/6248

Google Scholar

[3] M. Zhao, L. Cheng, A.H. Hongwei, A finite element solution of wave forces on a horizontal circular cylinder close to the sea-bed, Journal of Hydrodynamics, 18 (3 SUPPL) (2006) 139-145.

DOI: 10.1016/s1001-6058(06)60044-9

Google Scholar

[4] F., Aristodemo, G.R. Tomasicchio, P. Veltri, New model to determine forces at on-bottom slender pipelines, Coastal Engineering, 3 (2010) 267-280.

DOI: 10.1016/j.coastaleng.2010.11.004

Google Scholar

[5] M.G. Neves, P. Figueira, M.C. Afonso, A. Mendonça, M.V. Solis, E. Didier, M.T. Reis, M. Clavero, M. Ortega-Sánchez, M.A. Losada, Estudo experimental de forças sobre um emissário submarino: influência da direcção da agitação incidente, da presença dos aneis de estabilizaçção e da distância da conduta ao fundo, In Proccedings of 8as Jornadas Portuguesas de Engenharia Costeira e Portuaria, Lisbon (2013).

DOI: 10.11606/t.18.2008.tde-14102008-154437

Google Scholar

[6] M.G. Neves, A. Mendonça, E. Didier, M.T. Reis, J. Inverno, P. Figueira, M.C. Afonso, M. Vílchez, M. Clavero, M. Ortega-Sánchez, M.A. Losada, Experimental study of forces on a submarine outfall: Influence of incident wave direction of stabilizing concrete weights and pipe distance from the bottom, HYDRALAB IV Joint User Meeting, Lisbon, (2014).

Google Scholar

[7] Fluent 6.3, User's Guide, Fluent Inc, USA, 2006. Ansys (2016).

Google Scholar

[8] C.W. Hirt, B.D. Nichols, Volume of fluid (VoF) method for the dynamics of free boundaries, Journal of Computational Physics 39 (1981) 201-225.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[9] M. Peric, J.H. Ferziger, Computational Methods for Fluid Dynamics, second ed., Springer, (1997).

Google Scholar

[10] P.R.F. Teixeira, D.P. Davyt, E. Didier, R. Ramalhais, Numerical simulation of an oscillating water column device using a code based on Navier Stokes equations, Energy 61(1) (2013) 513–530.

DOI: 10.1016/j.energy.2013.08.062

Google Scholar

[11] H. Schäffer, G. Klopman, Review of multidirectional active wave absorption methods, J. Waterw. Port. Coast. Ocean Eng. 126 (2000) 88-97.

DOI: 10.1061/(asce)0733-950x(2000)126:2(88)

Google Scholar

[12] J.L. Lara, A. Ruju, I.J. Losada, Reynolds averaged Navier-Stokes modelling of long waves induced by transient wave group on a beach, In Proceedings of R. Soc. A. 467 (2011) 1215-1242.

DOI: 10.1098/rspa.2010.0331

Google Scholar

[13] E. Didier M.G. Neves, A Semi-Infinite Numerical Wave Flume using Smoothed Particle Hydrodynamics, IJOPE 22(3) (2012) 193-199.

Google Scholar

[14] P. Higuera, J.L. Lara, I.J. Losada, Realistic wave generation and active wave absorption for Navier-Stokes models Application to OpenFOAM®, Coastal Engineering 71 (2013) 102-118.

DOI: 10.1016/j.coastaleng.2012.07.002

Google Scholar

[15] E. Didier, P.R.F. Teixeira, M.G. Neves, A 3D numerical wave tank for coastal engineering studies, Defect and Diffusion Forum 372 (2016) 1-10.

DOI: 10.4028/www.scientific.net/ddf.372.1

Google Scholar

[16] P.R.F. Teixeira, E. Didier, M.G. Neves, A 3D RANS-VOF wave tank for oscillation water column device studies, In Proccedings of VII International Conference on Computational Methods in Marine Engineering, MARINE 2017, Nantes (2017) 710-720.

Google Scholar

[17] E. Didier, J.M. Paixão Conde, P.R.F. Teixeira, Numerical simulation of na oscillation water column wave energy converter with and without damping, In Proceedings of IV International Conference on Computational Methods in Marine Engineering, MARINE 2011, Lisbon (2011) 206-217.

Google Scholar

[18] J.M. Paixão Conde, P.R.F. Teixeira, E. Didier, Numerical simulation of na oscillating water column wave energy converter: comparison of two numerical codes, In Proceedings of 21th International Offshore and Polar Engineering Conference, Maui (2011) 688-674.

Google Scholar

[19] A. Mendonça, J. Dias, E. Didier, C.J.E.M. Fortes, M.G. Neves, M.T. Reis, J.M.P. Conde, P. Poseiro, P.R.F. Teixeira, An integrated tool formodelling OWC-WECs in vertical breakwaters: preliminary developments, J. Hydro-environment Research 19 (2017) 198-213.

DOI: 10.1016/j.jher.2017.10.007

Google Scholar

[20] E. Didier, M.G. Neves, P.R.F. Teixeira, Análise das forças num emissário submarino utilizando um modelo numérico 3D RANS-VoF, In Proceedings of 5as Jornadas de Engenharia Hidrográfica, Lisbon (2018) 447-450.

Google Scholar