[1]
C.P. Costa, M.T. Vilhena, D.M. Moreira, T. Tirabassi, Semi-analytical solution of the steady threedimensional advection-diffusion equation in the planetary boundary layer, Atmos. Environ. 40 (2006) 5659-5669.
DOI: 10.1016/j.atmosenv.2006.04.054
Google Scholar
[2]
D.M. Moreira, M.T. Vilhena, T. Tirabassi, C.P. Costa, B. Bodmann, Simulation of pollutant dispersion in atmosphere by the Laplace transform: the ADMM approach, Water Air Soil Pollut. 177 (2006) 411-439.
DOI: 10.1007/s11270-006-9182-2
Google Scholar
[3]
D.M. Moreira, M.T. Vilhena, T. Tirabassi, D. Buske, R.M. Cotta, Near source atmospheric pollutant dispersion using the new GILTT method, Atmos. Environ. 39 (2005) 6290-6295.
DOI: 10.1016/j.atmosenv.2005.07.008
Google Scholar
[4]
D.M. Moreira, M.T. Vilhena, T. Tirabassi, D. Buske, C.P. Costa, Comparison between analytical models to simulate pollutant dispersion in the atmosphere, Int.J. Environ. Waste Manag. 6 (2010) 327-344.
DOI: 10.1504/ijewm.2010.035066
Google Scholar
[5]
D.M Moreira, M.T. Vilhena, D. Buske, T. Tirabassi, The state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere, Atmos. Res. 92 (2009) 1-17.
DOI: 10.1016/j.atmosres.2008.07.004
Google Scholar
[6]
A. Bensoussan, J.L. Lions, G. Papanicolau, Asymptotic Analysis for Periodic Structures, NorthHolland, Amsterdam, (1978).
Google Scholar
[7]
B.E. Pobedrya, Mechanics of Composite Materials, Moscow State University Press, Moscow, 1984. (in Russian).
Google Scholar
[8]
N.S. Bakhvalov, G.P. Panasenko, Homogenisation: Averaging Processes in Periodic Media, Kluwer, Dordrecht, (1989).
DOI: 10.1007/978-94-009-2247-1
Google Scholar
[9]
L. Tartar, The General Theory of Homogenisation: a Personalized Introduction, Springer-Verlag, Berlin Heidelberg, (2009).
Google Scholar
[10]
K. Rui, C.P. Costa, L.D. Pérez-Fernández, J. Bravo-Castillero, Modeling pollutant dispersion in the atmosphere by combining the ADMM with mathematical homogenization, Sci. Plena 13 (2017) 049902. (in Portuguese).
DOI: 10.14808/sci.plena.2017.049902
Google Scholar
[11]
C.P. Costa, L.D. Pérez-Fernández, K. Rui, J. Bravo-Castillero, Combining the ADMM and mathematical homogenization for atmospheric pollutant dispersion modeling, Rev. Bras. Meteorol. 33 (2018) 329-335. (in Portuguese).
DOI: 10.1590/0102-7786332014
Google Scholar
[12]
C.P. Costa, L.D. Pérez-Fernández, J. Bravo-Castillero, Pollutant dispersion modeling via mathematical homogenization and integral transform-based multilayer methods, in: L.B.L. Santos, R.G. Negri, T.J. Carvalho (eds.) Towards Mathematics, Computers and Environment: a Disasters Perspective, Springer, 2019, 21 pp. (to appear)[13] J. Abate, P.P. Valkó, Multi-precision Laplace transform inversion, Int. J. Numer. Methods Eng. 60 (2004) 979-993.
DOI: 10.1007/978-3-030-21205-6_4
Google Scholar
[14]
J. Abate, W. Whitt, A unified framework for numerically inverting Laplace transforms, INFORMS J. Comp. 18 (2006) 408-421.
DOI: 10.1287/ijoc.1050.0137
Google Scholar
[15]
C.P. Costa, K. Rui, L.D. Pérez-Fernández, Different numerical inversion algorithms of the Laplace transform for the solution of the advection-diffusion equation with non-local closure in air pollution modeling, Trends Appl. Math. 19 (2018) 43-58.
DOI: 10.5540/tema.2018.019.01.43
Google Scholar
[16]
C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, (1992).
Google Scholar