An ADMM-AHM Integrated Approach for Problems with Rapidly Oscillating Coefficients

Article Preview

Abstract:

The Advection-Diffusion Multilayer Method (ADMM) emerged to address the solution of advection-diffusion equations with variable coefficients in the context of pollutant dispersion modeling. The ADMM is based on the piecewise-constant approximation of the variable coefficients and the application of the Laplace transform. Applications of ADMM in other areas are potentially relevant for modeling the behavior of heterogeneous media. However, if such heterogeneity is characterized by rapidly oscillating coefficients, the direct application of the ADMM would increase the computational effort needed, as it would require a very fine discretization of the domain. In order to overcome such a drawback, in this contribution, an alternative approach combining the ADMM with the Asymptotic Homogenization Method (AHM) is presented. The ADMM-AHM integrated approach is compared to the direct application of the ADMM in order to assess the accuracy of the estimations of the solution of the original problem, and the computational efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

81-90

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.P. Costa, M.T. Vilhena, D.M. Moreira, T. Tirabassi, Semi-analytical solution of the steady threedimensional advection-diffusion equation in the planetary boundary layer, Atmos. Environ. 40 (2006) 5659-5669.

DOI: 10.1016/j.atmosenv.2006.04.054

Google Scholar

[2] D.M. Moreira, M.T. Vilhena, T. Tirabassi, C.P. Costa, B. Bodmann, Simulation of pollutant dispersion in atmosphere by the Laplace transform: the ADMM approach, Water Air Soil Pollut. 177 (2006) 411-439.

DOI: 10.1007/s11270-006-9182-2

Google Scholar

[3] D.M. Moreira, M.T. Vilhena, T. Tirabassi, D. Buske, R.M. Cotta, Near source atmospheric pollutant dispersion using the new GILTT method, Atmos. Environ. 39 (2005) 6290-6295.

DOI: 10.1016/j.atmosenv.2005.07.008

Google Scholar

[4] D.M. Moreira, M.T. Vilhena, T. Tirabassi, D. Buske, C.P. Costa, Comparison between analytical models to simulate pollutant dispersion in the atmosphere, Int.J. Environ. Waste Manag. 6 (2010) 327-344.

DOI: 10.1504/ijewm.2010.035066

Google Scholar

[5] D.M Moreira, M.T. Vilhena, D. Buske, T. Tirabassi, The state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere, Atmos. Res. 92 (2009) 1-17.

DOI: 10.1016/j.atmosres.2008.07.004

Google Scholar

[6] A. Bensoussan, J.L. Lions, G. Papanicolau, Asymptotic Analysis for Periodic Structures, NorthHolland, Amsterdam, (1978).

Google Scholar

[7] B.E. Pobedrya, Mechanics of Composite Materials, Moscow State University Press, Moscow, 1984. (in Russian).

Google Scholar

[8] N.S. Bakhvalov, G.P. Panasenko, Homogenisation: Averaging Processes in Periodic Media, Kluwer, Dordrecht, (1989).

DOI: 10.1007/978-94-009-2247-1

Google Scholar

[9] L. Tartar, The General Theory of Homogenisation: a Personalized Introduction, Springer-Verlag, Berlin Heidelberg, (2009).

Google Scholar

[10] K. Rui, C.P. Costa, L.D. Pérez-Fernández, J. Bravo-Castillero, Modeling pollutant dispersion in the atmosphere by combining the ADMM with mathematical homogenization, Sci. Plena 13 (2017) 049902. (in Portuguese).

DOI: 10.14808/sci.plena.2017.049902

Google Scholar

[11] C.P. Costa, L.D. Pérez-Fernández, K. Rui, J. Bravo-Castillero, Combining the ADMM and mathematical homogenization for atmospheric pollutant dispersion modeling, Rev. Bras. Meteorol. 33 (2018) 329-335. (in Portuguese).

DOI: 10.1590/0102-7786332014

Google Scholar

[12] C.P. Costa, L.D. Pérez-Fernández, J. Bravo-Castillero, Pollutant dispersion modeling via mathematical homogenization and integral transform-based multilayer methods, in: L.B.L. Santos, R.G. Negri, T.J. Carvalho (eds.) Towards Mathematics, Computers and Environment: a Disasters Perspective, Springer, 2019, 21 pp. (to appear)[13] J. Abate, P.P. Valkó, Multi-precision Laplace transform inversion, Int. J. Numer. Methods Eng. 60 (2004) 979-993.

DOI: 10.1007/978-3-030-21205-6_4

Google Scholar

[14] J. Abate, W. Whitt, A unified framework for numerically inverting Laplace transforms, INFORMS J. Comp. 18 (2006) 408-421.

DOI: 10.1287/ijoc.1050.0137

Google Scholar

[15] C.P. Costa, K. Rui, L.D. Pérez-Fernández, Different numerical inversion algorithms of the Laplace transform for the solution of the advection-diffusion equation with non-local closure in air pollution modeling, Trends Appl. Math. 19 (2018) 43-58.

DOI: 10.5540/tema.2018.019.01.43

Google Scholar

[16] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum, New York, (1992).

Google Scholar