[1]
J. Bear, Dynamics of fluids in porous media, Dover Publications, New York, 1972. Originally published: American Elsevier Publishing Company, New York.
DOI: 10.1016/0160-9327(73)90013-6
Google Scholar
[2]
J.Abate, P. P. Valkó, Multi-precision Laplace transform inversion, International Journal for Numerical Methods in Engineering. 60(5) (2004) 979-993.
DOI: 10.1002/nme.995
Google Scholar
[3]
A. M. Cohen, Numerical Methods for Laplace Transform Inversion, Springer Science, New York, (2007).
Google Scholar
[4]
B. Davies, B. Martin, Numerical inversion of the Laplace transform: a survey and comparison of methods, Journal of Computational Physics. 33(1) (1979) 1-32.
DOI: 10.1016/0021-9991(79)90025-1
Google Scholar
[5]
D. G. Duffy, On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications, ACM Transactions on Mathematical Software. 19(3) (1993) 333-359.
DOI: 10.1145/155743.155788
Google Scholar
[6]
H. Stehfest, Algorithm 368: Numerical inversion of Laplace transforms [D5], Communications of the ACM, 13(1) (1970) 47-49.
DOI: 10.1145/361953.361969
Google Scholar
[7]
H. Stehfest, Remark on algorithm 368: Numerical inversion of Laplace transforms, Communications of the ACM. 13(10) (1970) 624.
DOI: 10.1145/355598.362787
Google Scholar
[8]
H.Y. Chung, Y.Y. Sun, Taylor series approach to functional approximation for inversion of Laplace transforms, Electronics Letters. 22(23) (1986) 1219-1221.
DOI: 10.1049/el:19860836
Google Scholar
[9]
A. F. Moench, A. Ogata, A Numerical Inversion of the Laplace TransformSolution to Radial Dispersion in aPorous Medium, Water Resources Research. 17(1) (1981) 250-252.
DOI: 10.1029/wr017i001p00250
Google Scholar
[10]
C.-S. Chen, Analytical and Approximate Solutions to Radial Dispersion From an Injection Well to a Geological Unit With Simultaneous Diffusion Into Adjacent Strata, Water Resources Research. 21(8) (1985) 1069-1076.
DOI: 10.1029/wr021i008p01069
Google Scholar
[11]
Q. Wanga, H. Zhan, On different numerical inverse Laplace methods for solute transport problems, Advances in Water Resources. 75 (2015) 80-92.
DOI: 10.1016/j.advwatres.2014.11.001
Google Scholar
[12]
F. R. De Hoog, J. H. Knight, A. N. Stokes, An improved method for numerical inversion of Laplace transforms, SIAM Journal on Scientific and Statistical Computing. 3(3) (1982) 357-366.
DOI: 10.1137/0903022
Google Scholar
[13]
G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transforms, Journal of Computational and Applied Mathematics. 10(1) (1984) 113-132.
DOI: 10.1016/0377-0427(84)90075-x
Google Scholar
[14]
A. Talbot, The accurate numerical inversion of Laplace transforms, IMA Journal of Applied Mathematics. 23(1) (1979) 97-120.
DOI: 10.1093/imamat/23.1.97
Google Scholar
[15]
W. T. Weeks, Numerical inversion of Laplace transforms using Laguerre functions, Journal of the Association for Computing Machinery. 13(3) (1966) 419-429.
DOI: 10.1145/321341.321351
Google Scholar
[16]
R. M. Simon, M. T. Stroot, G. H. Weiss, Numerical inversion of Laplace transforms with application to percentage labeled mitoses experiments, Computers and Biomedical Research. 5(6) (1972) 596-607.
DOI: 10.1016/0010-4809(72)90039-0
Google Scholar
[17]
V. Zakian, Numerical inversion of Laplace transform, Electronics Letters. 5(6) (1969) 120-121.
Google Scholar
[18]
A. Ogata, R. B. Banks, A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media, Geological survey professional paper 411-A. United States Government Printing Office, Washington, DC, (1961).
DOI: 10.3133/pp411a
Google Scholar
[19]
E. Kreyszig, Advanced Engineering Mathematics, tenth ed., John Wiley & Sons, Inc., (2011).
Google Scholar
[20]
D. P. Gaver Jr., Observing Stochastic Processes, and Approximate Transform Inversion, Operations Research. 14(3) (1966) 444-459.
DOI: 10.1287/opre.14.3.444
Google Scholar