Oil Spill Simulations and Susceptibility in Coastal and Estuarine Areas

Article Preview

Abstract:

A modelling system was utilised to simulate the movement and behaviour of oil slicks for two types of hydrocarbons, a diesel and another residual, considering hydrodynamic variations. Susceptible areas to oil touching were found in adjacent regions of two vessel manoeuvring zones, in two types of zones, one in a marine coastal and another in an estuarine environment. The evaporation rates were calculated for an estimate of the mass losses. For the maritime zone, the oil particles reached the vicinity of the beaches in approximately 4 to 8 hours after the beginning of the spill simulations, while for the estuary in approximately 1 hour. For the scenarios with diesel oil, mass losses oscillated between 13 to 16% in the estuarine region, and between 23 and 29% in the marine coastal zones. The evaporation rates for scenarios with residual oil, between 2 and 5%, were considerably lower than for diesel (15 and 22%), especially for spills simulated in the estuarine region, where the oil particles reached the lagoon banks after 1 hour. Mass losses by evaporation were more intense in marine coastal areas than for oil spills simulated in estuarine regions, possibly due to the more intense hydrodynamic conditions and the longer time that the oil needs to reach the coast. The fluctuations of observed environmental conditions justify the need for a robust number of simulations for reducing the uncertainties related to the oceanographic and meteorological variability that affect oil spill movement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-120

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Azevedo, A. B. Fortunato, B. Epifânio, S. den Boer, E. R. Oliveira, F. L. Alves, G. de Jesus, J. L. Gomes, A. Oliveira, An oil risk management system based on high-resolution hazard and vulnerability calculations, Ocean & Coastal Management 136 (2017) 1-18.

DOI: 10.1016/j.ocecoaman.2016.11.014

Google Scholar

[2] T. M. Alves, E. Kokinou, G. Zodiatis, R. Lardner, C. Panagiotakis, H. Radhakrishnan, Modelling of oil spills in confined maritime basins: The case for early response in the Eastern Mediterranean Sea, Environmental Pollution 206 (2015) 390-399.

DOI: 10.1016/j.envpol.2015.07.042

Google Scholar

[3] M. L. Spaulding, State of the art review and future directions in oil spill modeling, Mar. Poll. Bull. 115 (2017) 7-19.

Google Scholar

[4] R. Kankara, S. Arockiaraj, K. Prabhu, Environmental sensitivity mapping and risk assessment for oil spill along the Chennai Coast in India, Mar. Poll. Bull. 106 (2016) 95-103.

DOI: 10.1016/j.marpolbul.2016.03.022

Google Scholar

[5] E. Larson, Living with risk: A global review of disaster reduction initiatives, Diane Publishing Company, (2003).

Google Scholar

[6] E. R. Gundlach, M. O. Hayes, Vulnerability of coastal environments to oil spill impacts, Marine technology society Journal 12 (1978) 18-27.

Google Scholar

[7] MMA, Especificações e normas técnicas para a elaboração de Cartas de Sensibilidade Ambiental para derramamentos de óleo., first edition, Brasília, (2002).

DOI: 10.11606/d.44.2007.tde-18122007-145313

Google Scholar

[8] J. A. Juanes, A. Puente, J. A. Revilla, C. Álvarez, A. García, R. Medina, S. Castanedo, L. Morante, S. González, G. García-Castrillo, The Prestige oil spill in Cantabria (Bay of Biscay). Part II. Environmental assessment and monitoring of coastal ecosystems, J. Coast. Res. 978-992.

DOI: 10.2112/04-0368.1

Google Scholar

[9] S. Castanedo, J. A. Juanes, R. Medina, A. Puente, F. Fernandez, M. Olabarrieta, C. Pombo, Oil spill vulnerability assessment integrating physical, biological and socio-economical aspects: Application to the Cantabrian coast, J. Environ. Manage. 91 (2009) 149-159.

DOI: 10.1016/j.jenvman.2009.07.013

Google Scholar

[10] J. L. Nicolodi, Atlas de sensibilidade ambiental ao óleo da Bacia Marítima de Pelotas, Ministério do Meio Ambiente, Secretaria de Mudanças Climáticas e Qualidade Ambiental, Departamento de Qualidade Ambiental, Gerência de Qualidade Costeira e do Ar, (2016).

DOI: 10.1016/b978-85-352-7735-7.50023-5

Google Scholar

[11] W. C. Marques, C. E. Stringari, E. P. Kirinus, O. O. Möller, E. E. Toldo, M. M. Andrade, Numerical modeling of the Tramandaí beach oil spill, Brazil-Case study for January 2012 event, Applied Ocean Research 65 (2017) 178-191.

DOI: 10.1016/j.apor.2017.04.007

Google Scholar

[12] C. B. Monteiro, E. P. Kirinus, W. Marques, P. Oleinik, J. Costi, Analysis of two oil spills in the Southern Brazilian Shelf, in the years of 2012 and 2014, Defect Diffus. Forum 372 (2017) 70-80.

DOI: 10.4028/www.scientific.net/ddf.372.70

Google Scholar

[13] C. E. Stringari, W. C. Marques, R. T. Eidt, L. F. Mello, Modeling an Oil Spill along the Southern Brazilian Shelf: Forcing Characterization and Its Influence on the Oil Fate, International Journal of Geosciences 04 (2013) 397-407.

DOI: 10.4236/ijg.2013.42038

Google Scholar

[14] R. O. Thompson, Low-pass filters to suppress inertial and tidal frequencies, Journal of Physical Oceanography 13 (1983) 1077-1083.

DOI: 10.1175/1520-0485(1983)013<1077:lpftsi>2.0.co;2

Google Scholar

[15] P. H. Oleinik, W. C. Marques, E. P. Kirinus, Evaluation of the Seasonal Pattern of Wind-Driven Waves on the South-Southeastern Brazilian Shelf, Defect Diffus. Forum 370 (2017) 141-151.

DOI: 10.4028/www.scientific.net/ddf.370.141

Google Scholar

[16] P. H. Oleinik, W. C. Marques, E. P. Kirinus, Estimate of the Wave Climate on the Most Energetic Locations of the South-Southeastern Brazilian Shelf, Defect Diffus. Forum 370 (2017) 130-140.[17] C. B. Monteiro, P. H. Oleinik, B. Lopes Vasconcellos, J. Costi, E. De, P. Kirinus, W. C. Marques, Reprodutibilidade por modelagem numérica de derrame de óleo bunker durante operação de abastecimento de embarcação, Revista Mundi Engenharia, Tecnologia e Gestão 3 (2018) 108- 133.

DOI: 10.21575/25254782rmetg2018vol3n3648

Google Scholar

[18] J. Janeiro, E. Fernandes, F. Martins, R. Fernandes, Wind and freshwater influence over hydrocarbon dispersal on Patos Lagoon, Brazil, Mar. Poll. Bull. 56 (2008) 650-665.

DOI: 10.1016/j.marpolbul.2008.01.011

Google Scholar

[19] C. E. Stringari, L. F. Mello, R. T. Eidt, W. C. Marques, Numerical Study of Oil Spill in the Southern Brazilian Shelf, 2012 International Conference on Offshore and Marine Technology: Science and Innovation 38-41.

DOI: 10.1109/navtec.2012.19

Google Scholar

[20] M. F. Fingas, A literature review of the physics and predictive modelling of oil spill evaporation, Journal of Hazardous Materials 42 (1995) 157-175.

DOI: 10.1016/0304-3894(95)00013-k

Google Scholar

[21] X. Chao, N. J. Shankar, H. F. Cheong, Two-and three-dimensional oil spill model for coastal waters, Ocean engineering 28 (2001) 1557-1573.

DOI: 10.1016/s0029-8018(01)00027-0

Google Scholar