Tribological Behavior of a Self-Lubricant Surface Film of H3BO3 Formed on a Borided Biomedical Steel by a Post-Treatment

Article Preview

Abstract:

This paper evaluates the tribological behavior of borided AISI 316L steel after being exposed to a secondary process to form a thin film of a solid lubricant. The process known as Short Annealing Process (SAP), allows creating a thin film of boric acid (H3BO3) on the surface of metallic materials previously exposed to boriding. The H3BO3 film acts like solid lubricant due to its lamellar crystalline structure. First samples of AISI 316L were exposed to boriding to temperatures of 875, 925 and 975 °C during 2, 4 and 6 h each temperature. Then, samples were heated to 750 °C during 5 min and cooled to room temperature at 60 % of Relative Humidity. The tribological behavior of the treated samples was evaluated by pin-on-disk test equipped with friction coefficient measurement system. Samples were characterized by Scanning Electron Microscopy, X-Ray Diffraction and Vickers microhardness test. The results showed an evident influence of the experimental parameters on the thickness of the boride layers and their mechanical properties. The layer ́s thickness was ranged from 10.51±0.71 to 51.57±5.12 μm. The hardness of the coatings was increased from 264 to 1685 HV. Finally, the Coefficient of Friction was diminished from values of 0.7 for the as-received material to 0.29 for the borided samples and to 0.06 for those after SAP, which indicates that the post-treatment SAP enhances the tribological properties of the biomedical steel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-74

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shih-Hang Chang, Bor-Yann Chen, Yung-Chih Lin, Toxicity assessment of three-component Fe–Cr–Ni biomedical materials using an augmented simplex design, Materials Science and Engineering C 32 (2012) 1893–1896.

DOI: 10.1016/j.msec.2012.05.008

Google Scholar

[2] Assem A. Sultan, MD, William A. Cantrell, BS, Anton Khlopas, MD, Ryan J. Berger, MD, Nipun Sodhi, BA, Robert M. Molloy, MD, Viktor E. Krebs, MD, *, Michael A. Mont, MD, Evidence-Based Management of Trunnionosis in Metal-on-Polyethylene Total Hip Arthroplasty: A Systematic Review,, J. Arthroplasty, 33 (2018) 3343-3353.

DOI: 10.1016/j.arth.2018.05.035

Google Scholar

[3] Chalmers BP, Perry KI, Taunton MJ, Mabry TM, Abdel MP. Diagnosis of adverse local tissue reactions following metal-on-metal hip arthroplasty. Curr. Rev. Musculoskelet Med., 9 (2016) 67-74.

DOI: 10.1007/s12178-016-9321-3

Google Scholar

[4] Saravanan M., Devaraju A, Venkateshwaran N., Krishnakumari A., Saarvesh J., A review on recent progress in coatings on AISI austenitic stainless Steel, Mater. Today Proceedings (ICAFM-2017) 5 (2018) 14392–14396.

DOI: 10.1016/j.matpr.2018.03.024

Google Scholar

[5] E.J. Sutow, S.R. Pollack, in: D.F. William (Ed.), Biocompatibility of Clinical Implant Materials, I, CRC Press, Boca Raton, FL, 1981, p.45–48.

Google Scholar

[6] Y.C. Tang, S. Katsuma, S. Fujimoto, S. Hiromoto, Acta Biomater. 2 (2006) 709–715.

Google Scholar

[7] Y. Okazaki, E. Gotoh, Corros. Sci. 50 (2008) 3429–3438.

Google Scholar

[8] I. Gurappa, Surf. Coat. Technol. 161 (2002) 70–78.

Google Scholar

[9] M.A. Costa, M.H. Fernandes, J. Mater. Sci. Mater. Med. 11 (2000) 141–153.

Google Scholar

[10] Enrique Hernández-Sánchez, Julio C. Velázquez, José. L. Castrejón-Flores, Alexis. Chino-Ulloa, Itzel P. Torres Avila, Rafael Carrera-Espinoza, Jorge A. Yescas-Hernández, and Carlos Orozco-Alvarez", Tribological behavior of the borided AISI 316L steel with reduced friction coefficient and enhanced wear resistance", Materials Transactions, Vol. 60, No. 1 (2019), pp.156-164.

DOI: 10.2320/matertrans.m2018282

Google Scholar

[11] J.L. Lemons, Surf. Coat. Technol. 103y104 (1998) 135.

Google Scholar

[12] I. Gurrappa, Corr. Prev. Control 48 (2001) 23.

Google Scholar

[13] J.L. Gonzalez-Carrasco, M.L. Escudero, J. Chao, M.C. Garcia-Alonso, Mater. Manuf. Processes 13 (1998) 431.

Google Scholar

[14] T. Sonoda, M. Kato, Br. Ceram. Proc. 60 (1999) 231.

Google Scholar

[15] H. Kawahara, Clin. Mater. 2 (1987) 181.

Google Scholar

[16] X. Ding, K. Yamashita, J.A. Umegaki, J. Ceram. Soc. Jpn. 103 (1995) 867.

Google Scholar

[17] T.N. Kim, Q.I. Feng, Z.S. Luo, E.Z. Cui, J.O. Kim, Surf. Coat. Technol. 99 (1998) 20.

Google Scholar

[18] Yonghua Duan, Ping Li, Zhizhong Chen, Jian Shi, Lishi M., Surface evolution and growth kinetics of Ti6Al4V alloy in pack boriding, Journal of Alloys and Compounds 742 (2018) 690-701.

DOI: 10.1016/j.jallcom.2018.01.383

Google Scholar

[19] E. Hernández-Sanchez, G. Rodriguez-Castro, A. Meneses-Amador, D. Bravo-Bárcenas, I. Arzate-Vazquez, H. Martínez-Gutiérrez, M. Romero-Romo, I. Campos-Silva, Effect of the anisotropic growth on the fracture toughness measurements obtained in the Fe2B layer,, Surf. Coat. Technol. Vol. 237 (2013), p.292–298.

DOI: 10.1016/j.surfcoat.2013.09.064

Google Scholar

[20] O. Allaoui, N. Bouaouadja, and G. Saindernan, Characterization of boronized layers on a XC38 steel,, Surface and Coatings Technology, vol. 201, no. 6, p.3475–3482, (2006).

DOI: 10.1016/j.surfcoat.2006.07.238

Google Scholar

[21] M. Keddam and S. M. Chentouf, Adiffusion model for describing the bilayer growth (FeB/Fe2B) during the iron powder-pack boriding,, Applied Surface Science, vol. 252, no. 2, p.393–399, (2005).

DOI: 10.1016/j.apsusc.2005.01.016

Google Scholar

[22] İlyas Turkmena, Emre Yalamaca, Mourad Keddam, Investigation of tribological behaviour and diffusion model of Fe2B layer formed by pack-boriding on SAE 1020 steel, Surf. Coat. Technol. 377 (2019) 1-12.

DOI: 10.1016/j.surfcoat.2019.08.017

Google Scholar

[23] M. Graf von Matuschka, Boronizing, Carl Hanser, Munich, Germany, 1st edition, (1980).

Google Scholar

[24] V. Jain and G. Sundararajan, Influence of the pack thickness of the boronizing mixture on the boriding of steel,, Surf. Coat. Technol., 149, 1 (2002) 21–26.

DOI: 10.1016/s0257-8972(01)01385-8

Google Scholar

[25] I. Campos, O. Bautista, G. Ramírez, M. Islas, J. De La Parra, and L. Zúniga, Effect of boron paste thickness on the growth kinetics of Fe2B boride layers during the boriding process,, Appl. Surf. Sci., 243, 1–4, (2005) 429–436.

DOI: 10.1016/j.apsusc.2004.09.099

Google Scholar

[26] E. Hernández-Sanchez, A. Chino-Ulloa, J. C. Velázquez, H. Herrera-Hernández, R. Velázquez-Mancilla, and R. Carrera-Espinoza, Effect of Relative Humidity on the Tribological Properties of Self-Lubricating H3BO3 Films Formed on the Surface of Steel Suitable for Biomedical Applications,, Advances in Materials Science and Engineering Vol. 2015, (2015) pp.1-9.

DOI: 10.1155/2015/436597

Google Scholar

[27] A. Erdemir, M. Halter, and G. R. Fenske, Preparation of ultralow-friction surface films on vanadium diboride,, Wear, 205, 1-2, (1997) 236–239.

DOI: 10.1016/s0043-1648(96)07508-4

Google Scholar

[28] ASTM E-384-05a Standard Test Method for Microindentation Hardness of Materials.

Google Scholar

[29] ASTM G 99-04a Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus.

Google Scholar

[30] K. Holmberg, A. Matthews, Coatings Tribology, 2nd ed., Elsevier, Amsterdam, (2009).

Google Scholar

[31] I. Campos-Silva, M. Ortiz-Domínguez, O. Bravo-Bárcenas, M.A. Doñu-Ruiz, D. Bravo-Bárcenas, C. Tapia-Quintero, M.Y. Jiménez-Reyes., Formation and kinetics of FeB/Fe2B layers and diffusion zone at the surface of AISI 316 borided steels, Surf. Coat. Technol., vol. 205, (2010), 403.

DOI: 10.1016/j.surfcoat.2010.06.068

Google Scholar

[32] G.A. Rodríguez-Castro, R.C. Vega-Morón, A. Meneses-Amador, H.W. Jiménez-Díaz, J.A. Andraca-Adame, I.E. Campos-Silva, M.E. Palomar Pardavé, Multi-pass scratch test behavior of AISI 316L borided Steel, Surf. Coat. Technol. 307 (2016) 491–499.

DOI: 10.1016/j.surfcoat.2016.09.017

Google Scholar

[33] O. Ozdemir, M.A. Omar, M. Usta, S. Zeytin, C. Bindal, A.H. Ucisik, Vacuum 83 (2009)175–179.

DOI: 10.1016/j.vacuum.2008.03.026

Google Scholar

[34] M.A. Béjar, E. Moreno, J. Mat. Process. Technol. 173 (2006) 352-358.

Google Scholar

[35] T. Balusamy, T.S.N. Sankara Narayanan, K. Ravichandran, I.S. Park, M.H. Lee, Surf. Coat. Technol. 232 (2013) 60–67.

Google Scholar

[36] Y. Kayali, A. Büyüksagis, I. Günes, Y. Yalçin, Prot. Met. Phys. Chem. Surf. 49 (3) (2013) 348–358.

Google Scholar

[37] I. Ozbek, B.A. Konduk, C. Bindal, A.H. Ucisik, Vacuum 65 (2002) 521–525.

DOI: 10.1016/s0042-207x(01)00466-3

Google Scholar

[38] Z. B. Hu, H.-J. Li, Q.-G. Fu, H. Xue, andG.-L. Sun, Fabrication and tribological properties of B2O3 as friction reducing coatings for carbon-carbon composites,, New Carbon Materials, vol. 22, no. 2, p.131–134, (2007).

DOI: 10.1016/s1872-5805(07)60013-4

Google Scholar