The Influence of H2SO4- NaCl Electrolyte Composition to the Electrochemical Noise Behaviour of a High-Alloy Cast Steel

Article Preview

Abstract:

In this study, the influence of varying sulphuric acid – sodium chloride electrolyte composition to the electrochemical noise behaviour of a high-alloy cast steel was analysed. The noise analysis was carried out in a bare 0.1 M sulphuric acid solution, in a pure 5 wt.% sodium chloride solution and three solutions with defined ratios of both. The electrochemical current noise signal was recorded with a sampling rate of 100 Hz for 1 hour in each test solution. For the identification of the frequency content of notified characteristic transients, the current-time records were analysed by the continuous wavelet transform (CWT). The characteristic transients were extracted from the noise signal for a further analysis of their frequency and amplitude characteristics. The results show high-frequency transients in the bare sulphuric acid and low-frequency transients in the pure sodium chloride solution. In the combined electrolyte solutions the portion of low-frequency components increases when the NaCl content increases and indicates the enhancing influence of localised damage evolution processes at the steel surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-81

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Liu, D. Wang, X. Chen, C. Wang, H. Liu, Recurrence plot-based dynamic analysis on electrochemical noise of the evolutive corrosion process, Corros. Sci. 124 (2017) 93–102.

DOI: 10.1016/j.corsci.2017.05.012

Google Scholar

[2] Y. Hou, C. Aldrich, K. Lepkova, L.L. Machuca, B. Kinsella, Monitoring of carbon steel corrosion by use of electrochemical noise and recurrence quantification analysis, Corros. Sci. 112 (2016) 63–72.

DOI: 10.1016/j.corsci.2016.07.009

Google Scholar

[3] L. Calabrese, L. Bonaccorsi, M. Galeano, E. Proverbio, D. Di Pietro, F. Cappuccini, Identification of damage evolution during SCC on 17-4 PH stainless steel by combining electrochemical noise and acoustic emission techniques, Corros. Sci. 98 (2015) 573–584.

DOI: 10.1016/j.corsci.2015.05.063

Google Scholar

[4] P. Casajús, N. Winzer, Electrochemical noise analysis of the corrosion of high-purity Mg-Al alloys, Corros. Sci. 94 (2015) 316–326.

DOI: 10.1016/j.corsci.2015.02.014

Google Scholar

[5] B.P. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, S.Y. Arman, Electrochemical impedance spectroscopy and electrochemical noise measurements as tools to evaluate corrosion inhibition of azole compounds on stainless steel in acidic media, Corros. Sci. 75 (2013) 269–279.

DOI: 10.1016/j.corsci.2013.06.010

Google Scholar

[6] S.V. Muniandy, W.X. Chew, C.S. Kan, Multifractal modelling of electrochemical noise in corrosion of carbon steel, Corros. Sci. 53 (2011) 188–200.

DOI: 10.1016/j.corsci.2010.09.005

Google Scholar

[7] T. Zhang, D. Wang, Y. Shao, G. Meng, F. Wang, A new criterion to determine the critical pitting temperature (CPT) based on electrochemical noise measurement, Corros. Sci. 58 (2012) 202–210.

DOI: 10.1016/j.corsci.2012.01.026

Google Scholar

[8] J. Kovac, C. Alaux, T.J. Marrow, E. Govekar, A. Legat, Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel, Corros. Sci. 52 (2010) 2015–(2025).

DOI: 10.1016/j.corsci.2010.02.035

Google Scholar

[9] A. Aballe, M. Bethencourt, F.J. Botana, M. Marcos, J.M. Sánchez-Amaya, Use of wavelets to study electrochemical noise transients, Electrochim. Acta. 46 (2001) 2353–2361.

DOI: 10.1016/s0013-4686(01)00424-8

Google Scholar

[10] F.H. Cao, Z. Zhang, J.X. Su, Y.Y. Shi, J.Q. Zhang, Electrochemical noise analysis of LY12-T3 in EXCO solution by discrete wavelet transform technique, Electrochim. Acta. 51 (2006) 1359–1364.

DOI: 10.1016/j.electacta.2005.07.012

Google Scholar

[11] A.M. Homborg, E.P.M. van Westing, T. Tinga, X. Zhang, P.J. Oonincx, G.M. Ferrari, J.H.W. de Wit, J.M.C. Mol, Novel time-frequency characterization of electrochemical noise data in corrosion studies using Hilbert spectra, Corros. Sci. 66 (2013) 97–110.

DOI: 10.1016/j.corsci.2012.09.007

Google Scholar

[12] A.M. Homborg, R.A. Cottis, J.M.C. Mol, An integrated approach in the time, frequency and time-frequency domain for the identification of corrosion using electrochemical noise, Electrochim. Acta. 222 (2016) 627–640.

DOI: 10.1016/j.electacta.2016.11.018

Google Scholar

[13] M.G. Pujar, U. Kamachi Mudali, S.S. Singh, Electrochemical noise studies of the effect of nitrogen on pitting corrosion resistance of high nitrogen austenitic stainless steels, Corros Sci. 53 (2011) 4178–4186.

DOI: 10.1016/j.corsci.2011.08.027

Google Scholar

[14] Y.J. Tan, N.N. Aung, T. Liu, Novel corrosion experiments using the wire beam electrode. (I) Studying electrochemical noise signatures from localised corrosion processes, Corros. Sci. 48 (2006) 23–38.

DOI: 10.1016/j.corsci.2004.11.019

Google Scholar

[15] K. Hladky, J.L. Dawson, The measurement of localized corrosion using electrochemical noise, Corros. Sci. 21 (1981) 317–322.

DOI: 10.1016/0010-938x(81)90006-8

Google Scholar

[16] M.A.M. Ibrahim, S.S. Abd El Rehim, M.M. Hamza, Corrosion behavior of some austenitic stainless steels in chloride environments, Mater. Chem. Phys. 115 (2009) 80–85.

DOI: 10.1016/j.matchemphys.2008.11.016

Google Scholar

[17] A. Bautista, G. Blanco, F. Velasco, Corrosion behaviour of low-nickel austenitic stainless steels reinforcements: A comparative study in simulated pore solutions, Cem Concr Res 36 (2006) 1922–(1930).

DOI: 10.1016/j.cemconres.2005.10.009

Google Scholar

[18] F. Bocher, F. Presuel-Moreno, J.R. Scully, Investigation of crevice corrosion of AISI 316 stainless steel compared to Ni–Cr–Mo alloys using coupled multielectrode arrays, J. Electrochem. Soc. 155 (2008) C256–C268.

DOI: 10.1149/1.2883741

Google Scholar

[19] A. Belfrouh, C. Masson, D. Vouagner, A.M. DE Becdelievre, N.S. Prakash, J.P. Audouardt, The Cumulative Effecy of Alloying Elements N, W, Mo and Cu on the Corrosion Behaviour of 17Cr-13Ni Stainless Steel in 2N H2SO4, Corros. Sci. 38 (1996) 1639–1648.

DOI: 10.1016/s0010-938x(96)00033-9

Google Scholar

[20] S.A. Salih, A.N. El-Masri, A.M. Baraka, Corrosion behaviour of some stainless steel alloys in molten alkali carbonates (I), J. Mater. Sci. 36 (2001) 2547–2555.

Google Scholar

[21] S. Mukai, H. Okamoto, T. Kudo, A. Ikeda, Corrosion behavior of 25 Pct duplex stainless steel in CO2-H2S-Cl- Environments, J. Mater. Energy Syst. 5 (1983) 59–66.

DOI: 10.1007/bf02833508

Google Scholar

[22] R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote, U. Stolz, The passivity of iron-chromium alloys, Corros. Sci. 29 (1989) 899–917.

DOI: 10.1016/0010-938x(89)90060-7

Google Scholar

[23] G.M. Bulman, A.C.C. Tseung, The kinetics of the anodic formation of the passive film on stainless steel, Corros. Sci. 12 (1972) 415–432.

DOI: 10.1016/s0010-938x(72)80088-x

Google Scholar

[24] C.O.A. Olsson, D. Landolt, Passive films on stainless steels - Chemistry, structure and growth, Electrochim. Acta. 48 (2003) 1093–1104.

DOI: 10.1016/s0013-4686(02)00841-1

Google Scholar

[25] C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, A. Guenbour, Effect of potential formation on the electrochemical behaviour of a highly alloyed austenitic stainless steel in contaminated phosphoric acid at different temperatures, Electrochim. Acta. 80 (2012) 248–256.

DOI: 10.1016/j.electacta.2012.07.012

Google Scholar

[26] Y.X. Qiao, Y.G. Zheng, P.C. Okafor, W. Ke, Electrochemical behaviour of high nitrogen bearing stainless steel in acidic chloride solution: Effects of oxygen, acid concentration and surface roughness, Electrochim. Acta. 54 (2009) 2298–2304.

DOI: 10.1016/j.electacta.2008.10.038

Google Scholar

[27] P. Montes-García, F. Castellanos, J.A. Vásquez-Feijioo, Assesing corrosion risk in reinforced concret using wavelets, Corros. Sci. 52 (2010) 555-561.

DOI: 10.1016/j.corsci.2009.10.014

Google Scholar

[28] P. Arun, T. Sasikumar, P. Arul Jose, J. Philip, Acoustic emission signal analysis and event extraction through tuned wavelet packet transform and continuous wavelet transform while testing the AA 2219 coupon, Int. J. Acoust. Vibr. 23 (2018) 234-239.

DOI: 10.20855/ijav.2018.23.21447

Google Scholar

[29] J.C. Goswami, A.K. Chan, Fundamentals of Wavelets – Theory, Algorithms and Applications, John Wiley Sons, New York, (1999).

Google Scholar

[30] J.M. Lilliy, S.C. Olhede, Generalized Morse Wavelets as a Superfamily of Analystic Wavelets, IEEE Trans. Signal Process. 60 (2012) 6036-6041.

DOI: 10.1109/tsp.2012.2210890

Google Scholar

[31] M. Mandel, V. Kietov, T. Dubberstein, L. Krüger, The Potentiodynamic Polarisation of a High-Alloy Steel – An Analysis by Acoustic Emission Testing and Long-Distance Microscopy, Electrochim. Acta 240 (2017) 350-360.

DOI: 10.1016/j.electacta.2017.04.091

Google Scholar