Fatigue Behavior of Titanium Endoprosthesis

Article Preview

Abstract:

This paper deals with applications of biomaterial in the human body. Each biomaterial is characterized by biofunctionality and biocompatibility [1]. The choice of biomaterial for medical applications is established on mechanical properties. Therefor the Ti6Al4V alloys, which properties are relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance [2], are most widely used in biomedical replacements, implants, and prosthesis. Despite the excellent properties of the titanium alloy, endoprosthesis often fails and the hip replacement is necessary. Common causes are overloading and cracking, static or dynamic. Other causes of failure include injury, implantation failure, manufacturing inaccuracies, and non-compliance with the manufacturing process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

312-317

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Gotman, Characteristics of Metal Used in Implants, Journal of Endourology 11, 6 (1997) 383-389.

Google Scholar

[2] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering 47, 3-4 (2004) 49-121.

DOI: 10.1016/j.mser.2004.11.001

Google Scholar

[3] C.G. Wright, S. Sporer, R. Urban, J. Jacobs, Fracture of a modular femoral neck after total hip arthroplasty: a case report, The Journal of Bone and Joint Surgery 92, 6 (2010) 1518.

DOI: 10.2106/jbjs.i.01033

Google Scholar

[4] M. Semlitsch, H.G. Willert, Implant materials for hip endoprostheses: old proofs and new trends, Archives of orthopaedic and trauma surgery 114, 2 (1995) 61-67.

DOI: 10.1007/bf00422826

Google Scholar

[5] M. Jenko, M. Gorenšek, M. Godec, M. Hodnik, B.Š. Batič, Č. Donik, D. Dolinar, Surface chemistry and microstructure of metallic biomaterials for hip and knee endoprostheses, Applied Surface Science 427 (2018) 584-593.

DOI: 10.1016/j.apsusc.2017.08.007

Google Scholar

[6] S.Y. Jauch, G. Huber, E. Hoenig, M. Baxmann, T.M. Grupp, M.M. Morlock, Influence of material coupling and assembly condition on the magnitude of micromotion at the stem–neck interface of a modular hip endoprosthesis, Journal of biomechanics 44, 9 (2011) 1747-1751.

DOI: 10.1016/j.jbiomech.2011.04.007

Google Scholar

[7] R.I.M. Asri, W.S.W. Harun, M. Samykano, N.A.C. Lah, S.A.C. Ghani, F. Tarlochan, M.R. Raza, Corrosion and surface modification on biocompatible metals: A review, Materials Science and Engineering 77 (2017) 1261-1274.

DOI: 10.1016/j.msec.2017.04.102

Google Scholar

[8] M. Windler, R. Klabunde, Titanium for hip and knee prostheses, in: Titanium in medicine, Springer, Berlin 2001, pp.703-746.

DOI: 10.1007/978-3-642-56486-4_21

Google Scholar

[9] P. Hanusová, P. Palček, M. Uhríčik, M. Chalupová, Analysis of the cause of failure of titanium endoprosthesis, 36 th Danubia-Adria Symposium on Advances in Experimental Mechanics (2019).

DOI: 10.21062/ujep/366.2019/a/1213-2489/mt/19/5/749

Google Scholar