Small Scale Plastic Yielding of Mg Alloys Assessed with Nanoindentation

Article Preview

Abstract:

The paper investigates deformations and plastic properties received from different material volumes and tests of magnesium samples. Small volume characteristics gained on single Mg crystals are compared to polycrystalline AZ31 alloy. Results of tests employing nanoindentation, focused ion beam milling and electron backscatter diffraction techniques are presented. Large differences were found between micro-beam testing and spherical indentation tests having the volume one order of magnitude apart. The plastic strength scaling factor was found 1.7 for the studied grain configurations and volumes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

339-344

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Gupta, M.L.S. Nai, Magnesium, Magnesium Alloys, and Magnesium Composites, John Wiley & Sons, (2011).

Google Scholar

[2] D. Catoor, Y.F. Gao, J. Geng , M.J.N.V. Prasad, E.G. Herbert, K.S. Kumar, G.M. Pharr, E.P. George, Incipient plasticity and deformation mechanisms in single-crystal Mg during spherical nanoindentation, Acta Mater. 61 (2013) 2953-2965.

DOI: 10.1016/j.actamat.2013.01.055

Google Scholar

[3] C.Y. Sun, N. Guo, M.W. Fu, S.W. Wang, Modeling of Slip, Twinning and Transformation Induced Plastic Deformation for TWIP Steel Based on Crystal Plasticity, Int. J. Plast. 76 (2016) 186-212.

DOI: 10.1016/j.ijplas.2015.08.003

Google Scholar

[4] T. Guo, F. Siska, M.R. Barnett, Distinguishing between Slip and Twinning Events during Nanoindentation of Magnesium Alloy AZ31, Scr. Mater. 110 (2016) 10-13.

DOI: 10.1016/j.scriptamat.2015.07.034

Google Scholar

[5] J. Hu, W. Zhang, G. Peng, T. Zhang, Y. Zhang, Nanoindentation deformation of refine-grained AZ31 magnesium alloy: Indentation size effect, pop-in effect and creep behavior, Sci. Eng. A 725 (2018) 522-529.

DOI: 10.1016/j.msea.2018.03.104

Google Scholar

[6] J. Maňák, D. Vokoun, Microbending Experiments on Pure Magnesium with Nonbasal Slip Orientation, Materials (Basel) 11 (2018) 1434.

DOI: 10.3390/ma11081434

Google Scholar

[7] A. Milenin, P. Kustra, D. Byrska-Wójcik, T. Furushima, Physical and Numerical Modelling of Laser Dieless Drawing Process of Tubes from Magnesium Alloy, Procedia Eng. 207 (2017) 2352-2357.

DOI: 10.1016/j.proeng.2017.10.1007

Google Scholar

[8] A. Jäger, K. Tesař, J. Němeček, A. Milenin, J. Němeček, Microstructure and Micromechanical Properties of Mg Microtubes Prepared by Laser Dieless Drawing, Key Eng. Mater. 784 (2018) 21-26.

DOI: 10.4028/www.scientific.net/kem.784.21

Google Scholar

[9] J. Němeček, J. Maňák, J. Němeček, Modelling of Monocrystalline Magnesium Microbeam Bending, A. Poly. CTU Proc. 15 (2018) 69-73.

DOI: 10.14311/app.2018.15.0069

Google Scholar

[10] D. Tabor, The Hardness of Metals, Clarendon Press, (2000).

Google Scholar

[11] S.D. Mesarovic, N.A. Fleck, Spherical indentation of elastic – plastic solids, Proc. Royal Soc. Lond. 455 (1999) 2707-2728.

DOI: 10.1098/rspa.1999.0423

Google Scholar

[12] K.E. Prasad, K. Rajesh, U. Ramamurty, Micropillar and Macropillar Compression Responses of Magnesium Single Crystals Oriented for Single Slip or Extension Twinning, Acta Mater. 65 (2014) 316-325.

DOI: 10.1016/j.actamat.2013.10.073

Google Scholar