SnO2 Nano/Microfibers for Gas Sensors

Article Preview

Abstract:

SnO2 is an n-type semiconductor with the band gap energy of 3.6 eV. It has been widely studied for gas sensing applications, the sensitivity of which can be easily tuned by the operating temperature. The presented paper is focused on the preparation and detailed characterization of the hollow SnO2 nano/microfibers suitable for gas detection sensors. Ceramic SnO2 fibers were produced by needleless electrospinning and followed by the calcination process. The characterization was performed by SEM, TEM, XRD, and Raman spectroscopy. The precursor PVP/SnO2 fibers had amorphous nature. The calcination of the electro spun precursor resulted in the formation of hollow crystalline fibrous structures. The formation mechanism of hollow fibers has been described. Subsequently, a homogeneous fibrous layer was created by the spin coating method for gas sensing applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

324-329

Citation:

Online since:

November 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Wei, R. Georgescu, N. Ali, I. Morjan, T.A. George, F. Dumitrache, R. Birjega, M. Chipara, R. Skomski, D.J. Sellmyer, On the Synthesis and Physical Properties of Iron-Doped SnO2 Nanoparticles, J. Nanosci. Nanotechnol. 12 (2012) 9299-9301.

DOI: 10.1166/jnn.2012.6784

Google Scholar

[2] F. Mueller, D. Bresser, V.S.K. Chakravadhanula, S. Passerini, Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries, J. Power Sources 299 (2015) 398-402.

DOI: 10.1016/j.jpowsour.2015.08.018

Google Scholar

[3] O.K. Varghese, C.A. Grimes, Metal oxide nanoarchitectures for environmental sensing, J. Nanosci.Nanotechnol. 3 (2003) 277-293.

DOI: 10.1166/jnn.2003.158

Google Scholar

[4] S. Kuchibhatla, A.S. Karakoti, D. Bera, et al., One-dimensional nanostructured materials, Prog. Mater. Sci. 52 (2007) 699-913.

DOI: 10.1016/j.pmatsci.2006.08.001

Google Scholar

[5] H. Wu, W. Pan, D. Lin, H. Li, Electrospinning of ceramic nanofibers: Fabrication, assembly and applications, J. Adv. Ceram. 1 (2012) 2-23.

DOI: 10.1007/s40145-012-0002-4

Google Scholar

[6] R. Ramaseshan, S. Sundarrajan, R. Jose, Nanostructured ceramics by electrospinning. J. Appl. Phys. 102 (2007) 111101-111117.

DOI: 10.1063/1.2815499

Google Scholar

[7] X. Xia, X.J. Dong, Q.F. Wei, Y.B. Cai, K.Y. Lu, Formation mechanism of porous hollow SnO2 nanofibers prepared by one-step electrospinning, Express Polym. Lett. 6 (2012) 169-176.

DOI: 10.3144/expresspolymlett.2012.18

Google Scholar

[8] N. Haddad, Z. Ben Ayadi, H. Mahdhi, K. Djessas, Influence of fluorine doping on the microstructure, optical and electrical properties of SnO2 nanoparticles, J. Mater. Sci.: Mater. Electron. 28 (2017) 15457-15465.

DOI: 10.1007/s10854-017-7433-1

Google Scholar

[9] A. F. Shihada, A. S. Abushamleh, F. Weller, Crystal Structures and Raman Spectra of cis-[SnCl4(H2O)2]·2H2O,cis-[SnCl4(H2O)2]·3H2O,[Sn2Cl6(OH)2(H2O)2]·4H2O, and [HL][SnCl5 (H2O)]·2.5H2O(L3-acetyl-5-benzyl-1-phenyl-4,5-dihydro-1,2,4-triazine-6-oneoxime, C18H18N4 O2), Z. Anorg. Allg. Chem. 630 (2004) 841-847.

DOI: 10.1002/zaac.200400007

Google Scholar

[10] S. Haya, O. Brahmia, O. Halimi, M. Sebais, B. Boudine, Sol-gel synthesis of Sr-doped SnO2 thin films and their photocatalytic properties, Mater. Res. Express 4 (2017) 106406.

DOI: 10.1088/2053-1591/aa8deb

Google Scholar

[11] P.G. Li, M. Lei, W.H. Tang, X. Guo, X. Wang, Facile route to straight SnO2 nanowires and their optical properties, Journal of Alloys and Compounds 477 (2009) 515-518.

DOI: 10.1016/j.jallcom.2008.10.130

Google Scholar

[12] Z.W. Chen, J.K.L. Lai, C.H. Shek, Nucleation mechanism and microstructural assessment of SnO2 nanowires prepared by pulsed laser deposition, Phys. Lett. A 345 (2005) 391-397.

DOI: 10.1016/j.physleta.2005.07.041

Google Scholar

[13] D. Li, Y. Xia Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16 (2004) 1151-1170.

DOI: 10.1002/adma.200400719

Google Scholar

[14] W. Wang, J. Zhou, S. Zhang, J. Song, H. Duan, M. Zhou, C. Gong, Z. Bao, B. Lu, X. Li, W. Lan, E. Xie, A novel method to fabricate silica nanotubes based on phase separation effect, J. Mater. Chem. 20 (2010) 9068-9072.

DOI: 10.1039/c0jm02120b

Google Scholar