Defect and Diffusion Forum
Vol. 411
Vol. 411
Defect and Diffusion Forum
Vol. 410
Vol. 410
Defect and Diffusion Forum
Vol. 409
Vol. 409
Defect and Diffusion Forum
Vol. 408
Vol. 408
Defect and Diffusion Forum
Vol. 407
Vol. 407
Defect and Diffusion Forum
Vol. 406
Vol. 406
Defect and Diffusion Forum
Vol. 405
Vol. 405
Defect and Diffusion Forum
Vol. 404
Vol. 404
Defect and Diffusion Forum
Vol. 403
Vol. 403
Defect and Diffusion Forum
Vol. 402
Vol. 402
Defect and Diffusion Forum
Vol. 401
Vol. 401
Defect and Diffusion Forum
Vol. 400
Vol. 400
Defect and Diffusion Forum
Vol. 399
Vol. 399
Defect and Diffusion Forum Vol. 405
Paper Title Page
Abstract: The article is aimed on the analysis of the influence of cyclic loading on the internal friction measured on magnesium alloys, especially AZ31, AZ61 and AZ91, after homogenization annealing. Microplastic processe and dissipation of energy within the alloys are evaluated and investigated by internal friction measurements. In experimental measurements resonance method was used, which is based on continuous excitation of oscillations of specimens. Measurements were performed at final excitation voltages of 5 V, 6 V and 7 V.
318
Abstract: SnO2 is an n-type semiconductor with the band gap energy of 3.6 eV. It has been widely studied for gas sensing applications, the sensitivity of which can be easily tuned by the operating temperature. The presented paper is focused on the preparation and detailed characterization of the hollow SnO2 nano/microfibers suitable for gas detection sensors. Ceramic SnO2 fibers were produced by needleless electrospinning and followed by the calcination process. The characterization was performed by SEM, TEM, XRD, and Raman spectroscopy. The precursor PVP/SnO2 fibers had amorphous nature. The calcination of the electro spun precursor resulted in the formation of hollow crystalline fibrous structures. The formation mechanism of hollow fibers has been described. Subsequently, a homogeneous fibrous layer was created by the spin coating method for gas sensing applications.
324
Abstract: The brass CuZn36Pb2 is widely used for fittings, valves and other installation materials. Failures are observed occasionally caused by corrosion. Considering the Cu-Zn phase diagram only α-phase exists in the range of 650 and 300 °C. At higher temperatures α- and β-phase is stable and at lower temperatures α- and β´-phase exist. Since the β-phase is Zn-enriches, it is attacked severely by corrosion. In the recent work brass samples were heat treated at temperatures between 850 and 200 °C to study the microstructural changes and the corresponding electrochemical properties. Potentiostatic corrosion tests were applied in artificial fresh water and sea water at different potential settings. After a heat treated at 850 °C the brass has formed b-phase which can be shown by metallography. At lower temperatures the microstructure is fine grained and no β-phase was observed. To verify the presence of β´-phase a heat treatment at 200 °C was performed but no β´-phase was observed, which was confirmed additionally by X-ray diffraction. Again, after corrosion tests the samples were investigated by metallography and the β-phase was obviously more attacked than the α-phase.
333
Abstract: The paper investigates deformations and plastic properties received from different material volumes and tests of magnesium samples. Small volume characteristics gained on single Mg crystals are compared to polycrystalline AZ31 alloy. Results of tests employing nanoindentation, focused ion beam milling and electron backscatter diffraction techniques are presented. Large differences were found between micro-beam testing and spherical indentation tests having the volume one order of magnitude apart. The plastic strength scaling factor was found 1.7 for the studied grain configurations and volumes.
339
Abstract: 3D printing is a relatively new and quite attractive form of production, especially for complex parts. In this work, the SLM technology was used to prepare a magnesium alloy WE43 (Mg-4Y-3RE-Zr), a promising material for biodegradable implants. The aim of this study was to map the microstructure and mechanical properties of WE43 produced by SLM and compare it with conventional casting. Microstructure and chemical composition were studied using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and transmission electron microscopy (TEM). To examine mechanical properties, hardness measurement, compression tests and three-point flexural tests were carried out.
345
Abstract: Zirconium-based alloys are commonly used as a material for nuclear fuel claddings in the light water reactors. The cladding material must function to fix a huge number of pellets, while conducting heat into the coolant that flows turbulently around the fuel rods. Cladding tubes can contain gaseous fission products that escape the fuel. Thus, by functioning as a sealed unit, it prevents a contamination of the coolant water with high-radioactive fission products. The integrity of claddings is always a critical issue during reactor operation and wet or dry storage and transport of the spent fuel rods. Moreover, the role gains importance at Loss of Coolant Accidents (LOCA). After Fukushima accident, cladding materials are widely studied with the purpose to reduce the high-temperature oxidation rate and enhance accident tolerance. In our contribution, we introduce the studies on Zr-1Nb (E110) cladding tubes after high-temperature steam oxidation at 1350 °C. During the testing of claddings, microscopy analytical methods play an important role in experimental verification of pseudo-binary phase diagram Zr1Nb-O, i. e. particularly in oxygen content determination at phase transitions. Wave Dispersive Spectroscopy (WDS) with complementary nano-indentation method were used to characterize the Zr1Nb microstructure formed after LOCA. It includes the regions from an oxide and oxygen-stabilized α-Zr(O) to the acicular prior β-Zr phase. The decrease of hardness and Young's modulus corresponds with oxygen content measured in line-profiles by WDS. The oxygen level at transition points was partly determined from Fe, Nb β-stabilizers and significant change in mechanical properties in fine-grained prior β-Zr. The slight fluctuation of oxygen values in adjacent grains can be caused by preferential oxidation through the favorably oriented α-Zr(O) grains studied by WDS+EBSD. As well, the non-uniform oxygen-rich α-Zr(O) phase adjacent to the oxide was characterized by EBSD & WDS. Increasing hydrogen content in specimens, 10, 700 and 1000 ppm H, caused increasing solubility of oxygen in prior β-Zr phase upon high-temperature and the cladding material hardening.
351
Abstract: Al-Si-Cu alloy systems have a great importance in the casting industry due to their excellent castability, good mechanical properties and wear resistance. Addition of alloying elements, such as Mg and Cu, makes these alloys heat treatable. Improving of their mechanical properties allows their using in new, more demanding applications (e.g. engines, cylinder heads etc.). The most applied heat treatment for this alloy is a T6 (age hardening). Such a heat treatment is required for precipitation of the Al2Cu hardening dispersed phase that increases the mechanical properties of Al alloys. Therefore, the consequences of different solution heat treatment temperatures 505, 515 and 525 °C for AlSi9Cu3 and 515, 525 and 545 °C for AlSi12Cu1Fe cast alloys, with holding times 2, 4, 8, 16 and 32 hours, were investigated in this study. The effect of solution treatment was evaluated based on changes in microstructure (optical microscopy) and mechanical properties (hardness, impact energy and ultimate tensile strength). The study confirms the strengthening of the experimental alloys caused by application of optimum conditions of T6 and melting of the Cu-rich phases with application of inappropriate solution temperature, as well as distortion and changes of the testing bars.
357
Abstract: The high-speed grinding wheel can be defined as a self-sharpening composite structural tool composed from abrasive grains held in a specific binder. The main properties of grinding wheels depend on the type of abrasive elements, grit size, grade, binder and the resulting structure, which is influenced by several crucial technological processing steps. Preparation of an initial mixture of abrasive particles together with permanent binder’s mixture and temporary binder followed by pressing and high-temperature sintering is the essential technological step in the manufacturing of high-quality grinding wheels. High demands placed on functionality and quality together with constantly increasing effort to improve existing properties of grinding tools require detailed characterization of all input raw materials. For further research and development is crucial know, how each technological step can influence the final quality of the product. This contribution is focused on the characterization of four alumina abrasives with different grit size and two in chemical composition different binder mixtures which were used for the production of two different high-speed grinding wheels. Initial abrasive grains, binders and metallographic samples of high-speed grinding wheels were evaluated by means of scanning electron microscopy. The porosity of grinding wheels with different binding agents was also determined ustilizing digital image analysis technique.
365
Abstract: The aim of the study was to examine how the microstructure changes during heating of Fe-Mn-C system (step-sintering). Mixtures of powders containing 1 – 3 % Mn and 0.8 % C were prepared in Turbula TC2 mixer for 30 minutes. Before step-sintering, the dilatometric investigations were carried out, which allowed to obtain phase transformation temperatures of Fe-(1-3)Mn%-0.8%C system. Following dilatometric investigations, 4 steps – temperatures were determined dependently of isothermal sintering temperature. The commonly used industry temperatures – 1120 °C and 1250 °C – were set as target temperatures. For each of them, 4 heat steps were carried out. The procedure of investigations was as follows: samples were heated to the step temperature with heating rate 60 K/min, then isothermally sintered at step temperature for 5 min, and finally cooled to the room temperature with cooling rate ~ 66 K/min. Fe-Mn-C samples were mechanically (tensile) tested. After tensile tests, metallographic observations of the samples were performed. Based on the results obtained, the tensile strength was increasing with the increasing of the step temperature. The metallographic observation showed the microstructure evolution – with increasing the step temperature, decreasing of porosity was observed.
373
Abstract: The main purpose of this work was to determine the effect of the powder composition on the microstructure and properties of iron-based sinters used as a matrix in diamond tools. The Fe-Cu-Ni sinters obtained from a mixture of ground powders were used for experiments. The influence of manufacturing process parameters on the microstructure and mechanical properties of sinters was investigated. Sintering was performed using hot-pressing technique in a graphite mould. The investigations of obtained sinters included: density, hardness, static tensile test, X-ray diffraction analysis, microstructure and fracture surface observations. The obtained results indicate that the produced sinters have good plasticity and relatively high hardness.
379