[1]
M.V. Maisuradze, Yu.V. Yudin, A.A. Kuklina, Increase in impact strength during bainite structure formation In HY-TUF high-strength steel, Metallurgist. 63 (2019) 849-858.
DOI: 10.1007/s11015-019-00899-4
Google Scholar
[2]
M.V. Maisuradze, M.A. Ryzhkov, E.V. Antakov, N.A. Popov, P.A. Proskuryakov, Special features of transformations of supercooled austenite in modern structural steels, Met. Sci. Heat Treat. 62 (2020) 448-456.
DOI: 10.1007/s11041-020-00583-4
Google Scholar
[3]
H.-G. Fu, J. C. Kuang, G.-Q. Bai, L.-T. Wang, Study of medium carbon air hardened bainitic cast steel, Mater. Tech. 24 (2009) 247-252.
DOI: 10.1179/175355509x387147
Google Scholar
[4]
M.V. Maisuradze, Yu.V. Yudin, D.I. Lebedev, Thermal strengthening of large parts made from high-strength sparingly doped steel in air, Steel Transl. 50 (2020) 61-66.
DOI: 10.3103/s0967091220050083
Google Scholar
[5]
Yu.N. Simonov, O.D. Panov, M.Yu. Simonov, V.P. Vylezhnev, A.S. Ivanov, Principles of design of the chemical composition of steels for forming a structure of lower carbide-free bainite under delayed cooling, Met. Sci. Heat Treat. 57 (2015) 386-394.
DOI: 10.1007/s11041-015-9894-2
Google Scholar
[6]
G.E. Totten, Steel Heat Treatment: Metallurgy and Technologies, CRC Press, Boca Raton, (2006).
Google Scholar
[7]
M. Yamada, L. Yan, R. Takaku, Effects of alloying elements on the hardenability, toughness and the resistance of stress corrosion cracking in 1 to 3 mass. % Cr low alloy steel, ISIJ Int. 54 (2014) 240-247.
DOI: 10.2355/isijinternational.54.240
Google Scholar
[8]
A.K. Bhargava, M.K. Banerjee, Hardenability of steel, Compr. Mater. Finish. 2 (2017) 50-70.
Google Scholar
[9]
Y. Mae, Correlation of the effects of alloying elements on the hardenability of steels to the diffusion coefficients of elements in Fe, Int. J. Mater. Sci. App. 6 (2017) 200-206.
DOI: 10.11648/j.ijmsa.20170604.16
Google Scholar
[10]
F. Han, B. Hwang, D.-W. Suh, Effect of molybdenum and chromium on hardenability of low-carbon boron-added steels, Met. Mater. Int. 14 (2008) 667-672.
DOI: 10.3365/met.mat.2008.12.667
Google Scholar
[11]
M. Calcagnotto, D. Ponge, D. Raabe, On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels, Metal. Mater. Trans. A. 43 (2012) 37-46.
DOI: 10.1007/s11661-011-0828-3
Google Scholar
[12]
M.V. Maisuradze, M.A. Ryzhkov, Yu.V. Yudin, Transformations of supercooled austenite in a promising high-strength steel grade under continuous cooling conditions, Met. Sci. Heat Treat. 59 (2017) 486-490.
DOI: 10.1007/s11041-017-0176-z
Google Scholar
[13]
M.A. Ryzhkov, A.A. Popov, Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels, Met. Sci. Heat Treat. 52 (2011) 612-616.
DOI: 10.1007/s11041-011-9329-7
Google Scholar
[14]
ASTM E140-12B Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness, ASTM International, West Conshohocken, (2019).
DOI: 10.1520/e0140-12br19e01
Google Scholar
[15]
Z. Zhao, C. Liu, Y. Liu, D.O. Northwood, A new empirical formula for the bainite upper temperature limit of steel, J. Mater. Sci. 36 (2001) 5045-5056.
Google Scholar
[16]
M. Atkins, Atlas of Continuous Cooling Transformation Diagrams for Engineering Steels, British Steel Corporation, (1980).
Google Scholar
[17]
S. R. Elmi Hosseini, A. Zabett, Z. Li, Cooling curve analysis of heat treating oils and correlation with hardness and microstructure of a low carbon steel, Mater. Perform. Char. 3 (2014) 427-445.
DOI: 10.1520/mpc20130067
Google Scholar
[18]
C.E. Bates, G.E. Totten, N.A. Clinton, Handbook of Quenchants and Quenching Technology, ASM International, Materials Park, Ohio, (1993).
Google Scholar