[1]
R. Chen, Z. Zheng, N. Li, J. Li, F. Feng, In-situ investigation of phase transformation behaviors of 300M steel in continuous cooling process, Mater. Char. 144 (2018) 400-410.
DOI: 10.1016/j.matchar.2018.07.034
Google Scholar
[2]
R. Chen, S. Zhang, X. Liu, F. Feng, A flow stress model of 300m steel for isothermal tension, Materials (Basel). 14 (2021) 252-258.
DOI: 10.3390/ma14020252
Google Scholar
[3]
D. Lian, Microstructure properties of tempered D6AC steel, Applied Surface Science. 264 (2013) 100-104.
DOI: 10.1016/j.apsusc.2012.09.129
Google Scholar
[4]
K. Abbaszadeh, H. Saghafian, S. Kheirandish, Effect of bainite morphology on mechanical properties of the mixed bainite-martensite microstructure in D6AC steel, J. Mater. Sci. Tech. 28 (2012) 336-342.
DOI: 10.1016/s1005-0302(12)60065-6
Google Scholar
[5]
P. Skubisz, J. Sinczak, Properties of direct-quenched aircraft forged component made of ultrahigh-strength steel 300M, Aircraft Eng. Aero. Tech. 90 (2018) 713-719.
DOI: 10.1108/aeat-12-2015-0253
Google Scholar
[6]
R. Rana, S.B. Singh, Automotive Steels. Design, Metallurgy, Processing and Applications, Woodhead Publishing, Cambridge, (2016).
Google Scholar
[7]
F.C. Campbell, Manufacturing Technology for Aerospace Structural Materials, Elsevier Ltd., Amsterdam, (2006).
Google Scholar
[8]
M.V. Maisuradze, M.A. Ryzhkov, Thermal stabilization of austenite during quenching and partitioning of austenite for automotive steels, Metallurgist. 62 (2018) 337-347.
DOI: 10.1007/s11015-018-0666-2
Google Scholar
[9]
M.V. Maisuradze, Yu.V. Yudin, A.A. Kuklina, Increase in impact strength during bainite structure formation In HY-TUF high-strength steel, Metallurgist. 63 (2019) 849-858.
DOI: 10.1007/s11015-019-00899-4
Google Scholar
[10]
J.G. Speer, F.C.R. Assunção, D.K. Matlock, D.V. Edmonds, The Quenching and partitioning, process: Background and recent progress, Mater. Res. 8 (2005) 417-423.
DOI: 10.1590/s1516-14392005000400010
Google Scholar
[11]
X.Y. Long, J. Kang, B. Lv, F.C. Zhang, Carbide-free bainite in medium carbon steel, Mater. Design. 64 (2014) 237-245.
DOI: 10.1016/j.matdes.2014.07.055
Google Scholar
[12]
A.Yu. Kaletin, Yu.V. Kaletina, The role of retained austenite in the structure of carbide-free bainite of construction steels, Phys. Met. Metallogr. 119 (2018) 893-898.
DOI: 10.1134/s0031918x18090053
Google Scholar
[13]
A.Yu. Kaletin, A.G. Ryzhkov, Yu.V. Kaletina, Enhancement of impact toughness of structural steels upon formation of carbide free bainite, Phys. Met. Metal. 116 (2015) 109-114.
DOI: 10.1134/s0031918x15010068
Google Scholar
[14]
M.V. Maisuradze, M.A. Ryzhkov, Microstructure and mechanical properties of high strength alloyed steel for aerospace application, Solid State Phen. 284 (2018) 351-356.
DOI: 10.4028/www.scientific.net/ssp.284.351
Google Scholar
[15]
Z. Zhao, C. Liu, Y. Liu, D.O. Northwood, A new empirical formula for the bainite upper temperature limit of steel, J. Mater. Sci. 36 (2001) 5045-5056.
Google Scholar