Effects of Heat Treatment on Microstructure Parameters, Mechanical Properties and Cold Resistance of Sparingly Alloyed High-Strength Steel

Article Preview

Abstract:

This study considers the influence of various heat treatment conditions on the change of steel microstructure parameters, mechanical properties and cold resistance at a temperature of-60 °C. The common behavior of these properties is considered depending on the heating temperature used for quenching and subsequent tempering. Based on the obtained results, heat treatment conditions are proposed that provide a combination of a guaranteed yield point σ0.2 ≥600 N/mm2 with a low-temperature impact toughness KCV-60 ≥50 J/cm2 and plasticity δ5 ≥17%. The obtained research results are intended for industrial use at the mill "5000" site of MMK PJSC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-202

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu.P. Solntsev, T.I. Titova, Steel for the Far North and Siberia, KHIMIZDAT, St. Petersburg, (2002).

Google Scholar

[2] Ye.I. Khlusova, O.V. Sych, Designing cold-resistant structural materials for the Arctic. History, experience, current state, Innovations. 11(241) (2018) 85-92.

Google Scholar

[3] Yu.P. Solntsev, Cold-Resistant Steels and Alloys: Textbook for Universities, KHIMIZDAT, St. Petersburg, (2005).

Google Scholar

[4] M.L. Werner, F. Pursche, Modern high strength low alloyed steels, in: Proceedings of the 1st International Conference about Recent Trends in Structural Materials COMAT. (2010) 13-18.

Google Scholar

[5] S.A. Golosienko, T.V. Soshina, Ye.I. Khlusova, New high-strength cold-resistant steels for Arctic applications, Rolled Steel Production. 2 (2014) 17-24.

Google Scholar

[6] K.V. Aksenova, L.A. Barkov, M.P. Baryshnikov and others, Innovative Metallic Materials: Monograph, Publishing house of MSTU named by G.I. Nosov, Magnitogorsk, (2016).

Google Scholar

[7] Heat Treatment of Steel. Reference Manual. Yeh Ya, 3rd ed., Metallurgy, Moscow, (1979).

Google Scholar

[8] V.N. Nikitin, S.Yu. Nastich, L.A. Smirnov and others, Sparingly alloyed high-strength steels for quarry transport and mining equipment, Steel. 10 (2016) 57-66.

Google Scholar

[9] M. Pontremoli, L. Weber, K. Dilg, F. Schwinn, G. Knauf, M. Lippe, B. Erhardt, M. Finge, High-strength steels for thick sheets, pipes and profiles, Ferrous Metals. 4 (2006) 58-66.

Google Scholar

[10] F. Schröter, Höher feste stähle für den stahlbau – auswahl und anwendung, Bauingenieur Heft. 7(9) (2003) 426-432.

Google Scholar

[11] A. Kern, U. Schriever, Niobium in quenched and tempered HSLA-steels. Recent advances of niobium containing materials in Europe, in: Proceedings of the Symposium of 30 Years' Anniversary of Niobium Products Company GmbH, Verlag Stahleisen GmbH, Dusseldorf, 2005, pp.109-119.

DOI: 10.4028/www.scientific.net/msf.500-501.519

Google Scholar

[12] H.J. Juna, J.S. Kanga, D.H. Seob., K.B. Kangb, C.G. Park, Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels, Materials Science and Engineering A. 422 (2006) 157-162.

DOI: 10.1016/j.msea.2005.05.008

Google Scholar

[13] G. Luxenburger, M. Bockelmann, P. Wolf et al., High strength quenched and tempered (Q T) steels for pressure vessels, International Journal of Pressure Vessels and Piping. 81(2) (2004) 159-171.

DOI: 10.1016/j.ijpvp.2003.11.006

Google Scholar

[14] P.P. Poletskov, A.S. Kuznetsova, D.Yu. Alekseev, O.A. Nikitenko, E.V. Lopatina, Analysis of global development in producing hot-rolled high-strength cold-resistant sheets with a yield strength of 600 MPa and over, Vestnik of Nosov Magnitogorsk State Technical University. 18(4) (2020) 32-38.

DOI: 10.18503/1995-2732-2020-18-4-32-38

Google Scholar

[15] P.P. Poletskov, S.V. Denisov, O.A. Nikitenko and others, Study of decomposition of supercooled austenite of low-carbon pipe steel using the Gleeble 3500 system, News of Higher Educational Institutions. Ferrous Metallurgy. 62(3) (2019) 235-240.

DOI: 10.17073/0368-0797-2019-3-235-240

Google Scholar

[16] N.V. Koptseva, M.V. Chukin, O.A. Nikitenko, Use of the Thixomet PRO software for quantitative analysis of the ultrafine-grain structure of low-and medium-carbon steels subjected to equal channel angular pressing, Metal Science and Heat Treatment. 54(7-8) (2012) 387-392.

DOI: 10.1007/s11041-012-9518-z

Google Scholar

[17] P.P. Poletskov, O.A. Nikitenko, A.S. Kuznetsova, V.M. Salganik, The study of transformation kinetics for overcooled austenite of the new high-strength steel with increased cold resistance, CIS Iron and Steel Review. 19 (2020) 56-59.

DOI: 10.17580/cisisr.2020.01.11

Google Scholar

[18] Ju.M. Lahtin, Metal Science and Heat Treatment, Metallurgija, Moscow, (1983).

Google Scholar

[19] Je. Gudremon, Special Steels, Metallurgija, Moscow, (1966).

Google Scholar

[20] P.P. Poletskov, O.A. Nikitenko, A.S. Kuznetsova, D.Yu. Alekseev, The study of influence of heat treatment procedures on structure and properties of the new high-strength steel with increased cold resistance, CIS Iron and Steel Review. 20 (2020) 56-59.

DOI: 10.17580/cisisr.2020.02.11

Google Scholar

[21] P.P Poletskov, A.S. Kuznetsova, O.A. Nikitenko, Choosing the rational heat treatment conditions for high-strength cold-resistant weldable steel with yield strength of more than 600 N/mm2, IOP Conference Series: Materials Science and Engineering. 969(1) (2020) 012013.

DOI: 10.1088/1757-899x/969/1/012013

Google Scholar