[1]
M.J. Zehetbauer and Y.T. Zhu (eds.), Bulk Nanostructured Materials, Wiley-VCH, Weinheim, Germany, (2009).
Google Scholar
[2]
R.Z. Valiev, A.P. Zhilyaev and T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, TMS, Wiley, Hoboken, New Jersey, USA, (2014).
Google Scholar
[3]
A.M. Glezer, E.V. Kozlov, N.A. Koneva, N.A. Popova and I.A. Kurzina, Plastic Deformation of Nanostructured Materials, first ed., CRC Press, Taylor & Francis Group, UK, (2017).
DOI: 10.1201/9781315111964
Google Scholar
[4]
R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mat. Sci. 45 (2000) 103-189.
DOI: 10.1016/s0079-6425(99)00007-9
Google Scholar
[5]
H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater. 48 (2000) 1-29.
Google Scholar
[6]
X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A. 540 (2012) 1-12.
DOI: 10.1016/j.msea.2012.01.080
Google Scholar
[7]
V.V. Popov, V.N. Kaigorodov, E.N. Popova and A.V. Stolbovsky, Mössbauer emission spectroscopy of grain boundaries on poly- and nanocrystalline niobium, Bull. Russ. Acad. Sci. Phys. 71 (2007) 1244-1248.
DOI: 10.3103/s1062873807090110
Google Scholar
[8]
A.V. Stolbovskii and E.N. Popova, Study of the grain boundary structure in submicrocrystalline niobium after equal-channel angular pressing, Bull. Russ. Acad. Sci. Phys. 74 (2010) 358-362.
DOI: 10.3103/s1062873810030159
Google Scholar
[9]
V.V. Popov, A.V. Sergeev and A.V. Stolbovsky, Emission nuclear gamma-resonance spectroscopy of grain boundaries in coarse-grained and ultrafine-grained polycrystalline Mo, Defect and Diffusion Forum. 364 (2015) 147-156.
DOI: 10.4028/www.scientific.net/ddf.364.147
Google Scholar
[10]
V.V. Popov, A.V. Stolbovsky, A.V. Sergeev and V.A. Semionkin, Mössbauer spectroscopy of grain boundaries in ultrafine-grained materials produced by severe plastic deformation, Bull. Russ. Acad. Sci. Phys. 81 (2017) 951-955.
DOI: 10.3103/s106287381707022x
Google Scholar
[11]
S.V. Divinski, Grain boundary diffusion in severely deformed metals: State of the art and unresolved issues, Diffusion Foundations. 5 (2015) 57-73.
DOI: 10.4028/www.scientific.net/df.5.57
Google Scholar
[12]
Yu.G. Krasnoperova, L.M. Voronova, M.V. Degtyarev, T.I. Chashchukhina and N.N. Resnina, Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation, Phys. Met. Metallogr. 116 (2015) 79-86.
DOI: 10.1134/s0031918x15010081
Google Scholar
[13]
A.V. Stolbovsky, V.V. Popov, E.N. Popova and V.P. Pilyugin, Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures, Bull. Russ. Acad. Sci. Phys. 78 (2014) 908-916.
DOI: 10.3103/s1062873814090299
Google Scholar
[14]
V.V. Popov, E.N. Popova, A.V. Stolbovskii, V.P. Pilyugin and N.K. Arkhipova, Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained, Phys. Met. Metallogr. 113 (2012) 295-301.
DOI: 10.1134/s0031918x1203009x
Google Scholar
[15]
V.V. Popov, A.V. Stolbovkiy, E.N. Popova and V.P. Pilyugin, Structure and thermal stability of Cu after severe plastic deformation, Defect and Diffusion Forum. 297-301 (2010) 1312-1321.
DOI: 10.4028/www.scientific.net/ddf.297-301.1312
Google Scholar
[16]
M.Y. Alawadhi, S. Sabbaghianrad, Y.C. Wang, Y. Huang and T.G. Langdon, Characteristics of grain refinement in oxygen-free copper processed by equal-channel angular pressing and dynamic testing, Mater. Sci. Eng. A. 775 (2020) 138985.
DOI: 10.1016/j.msea.2020.138985
Google Scholar
[17]
S.A. Bojarski, M.P. Harmer and G.S. Rohrer, Influence of grain boundary energy on the nucleation of complexion transitions, Scr. Mater. 88 (2014) 1-4.
DOI: 10.1016/j.scriptamat.2014.06.016
Google Scholar
[18]
F. Emeis, M. Peterlechner, S.V. Divinski and G. Wilde, Grain boundary engineering parameters for ultrafine grained microstructures: Proof of principles by a systematic composition variation in the Cu-Ni system, Acta Mater. 150 (2018) 262-272.
DOI: 10.1016/j.actamat.2018.02.054
Google Scholar
[19]
V.V. Kondratyev, A.G. Kesarev and I.L. Lomaev, Grain boundary diffusion in nanocrystalline materials produced by severe plastic deformation, Diffusion Foundations. 5 (2015) 129-143.
DOI: 10.4028/www.scientific.net/df.5.129
Google Scholar
[20]
D. Saylor and G. Rohrer, Influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals, J. Am. Ceram. Soc. 82 (1999) 1529-1536.
DOI: 10.1111/j.1151-2916.1999.tb01951.x
Google Scholar
[21]
E. Rabkin, Y. Amouyal and L. Klinger, Scanning probe microscopy study of grain boundary migration in NiAl, Acta Mater. 52 (2004) 4953-4959.
DOI: 10.1016/j.actamat.2004.06.027
Google Scholar
[22]
P.Y. Amouyal and E. Rabkin, A scanning force microscopy study of grain boundary energy in copper subjected to equal channel angular pressing, Acta Mater. 55 (2007) 6681-6689.
DOI: 10.1016/j.actamat.2007.08.023
Google Scholar
[23]
P. Cantwell, M. Tang, S. Dillon, J. Luo, G. Rohrer and M. Harmer, Grain boundary complexions, Acta Mater. 62 (2014) 1-48.
DOI: 10.1016/j.actamat.2013.07.037
Google Scholar
[24]
J. Zimmerman, A. Sharma, S.V. Divinski and E. Rabkin, Relative grain boundary energies in ultrafine grain Ni obtained by high pressure torsion, Scr. Mater. 182 (2020) 90-93.
DOI: 10.1016/j.scriptamat.2020.03.008
Google Scholar
[25]
R.J. Behm, N. Garcia, and H. Rohrer (eds.), Scanning Tunneling Microscopy and Related Methods, Kluwer Academic Puplishers, Springer Netherlands, (1990).
Google Scholar
[26]
V.I. Vettegren', S.Sh. Rakhimov and V. N. Svetlov, Evolution of the surface relief of annealed copper and palladium samples under load, Phys. Solid State. 39 (1997) 1389-1392.
DOI: 10.1134/1.1130085
Google Scholar
[27]
P.V. Kuznetsov, T.V. Rakhmatulina, I.V. Belyaeva and A. V. Korznikov, Energy of internal interfaces as a characteristic of the structural evolution of ultrafine-grained copper and nickel after annealing, Phys. Met. Metallogr. 118 (2017) 241-248.
DOI: 10.1134/s0031918x17030115
Google Scholar
[28]
A. Stolbovsky, The use of finite mixture models and EM-algorithm to analyze grain structure in HPT-nanostructured metallic materials, IOP Conf. Ser.: Mater. Sci. Eng. 969 (2020) 012084.
DOI: 10.1088/1757-899x/969/1/012084
Google Scholar
[29]
B.S. Everitt and A. Skrondal, The Cambridge Dictionary of Statistics, fourth ed., Cambridge University Press, New York, (2010).
Google Scholar
[30]
Yu.R. Kolobov, N.V. Girsova, K.V. Ivanov, G.P. Grabovetskaya and O.B. Perevalova, The structural features and mechanical properties of submicrocrystalline nickel produced by severe plastic deformation, Russian Physics Journal. 45 (2002) 547-552.
DOI: 10.1023/a:1021139116678
Google Scholar