Specific Features of Statistical Analysis of Relative Grain Boundary Energies Obtained by Scanning Tunneling Microscopy

Article Preview

Abstract:

An approach based on statistical analysis is proposed for the processing of data obtained using scanning tunneling microscopy of grain boundaries, which allows a numerical estimation of the relative energy of grain boundaries. The proposed statistical model also gives a possibility to separate groups of grain boundaries depending on their average relative energy and fraction in general distribution. Scanning tunneling microscopy data analyses have been carried out on data obtained by investigating copper and nanostructured copper were analyzed coarse-grain commercially pure copper and on copper nanostructured by the equal-channel angular pressing (ECAP) method. Obtained results were compared with available in literature experimental data for these types of materials, received by other methods. It is established that the grain boundaries in coarse-grain copper have significantly lower relative energy in contrast to the grain boundaries of ECAP-treated copper. Besides, there is, except for boundaries with high relative energy, a fraction of boundaries in the deformed sample with energy corresponding to those in coarse-grain copper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-190

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Zehetbauer and Y.T. Zhu (eds.), Bulk Nanostructured Materials, Wiley-VCH, Weinheim, Germany, (2009).

Google Scholar

[2] R.Z. Valiev, A.P. Zhilyaev and T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications, TMS, Wiley, Hoboken, New Jersey, USA, (2014).

Google Scholar

[3] A.M. Glezer, E.V. Kozlov, N.A. Koneva, N.A. Popova and I.A. Kurzina, Plastic Deformation of Nanostructured Materials, first ed., CRC Press, Taylor & Francis Group, UK, (2017).

DOI: 10.1201/9781315111964

Google Scholar

[4] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mat. Sci. 45 (2000) 103-189.

DOI: 10.1016/s0079-6425(99)00007-9

Google Scholar

[5] H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Mater. 48 (2000) 1-29.

Google Scholar

[6] X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev, Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena, Mater. Sci. Eng. A. 540 (2012) 1-12.

DOI: 10.1016/j.msea.2012.01.080

Google Scholar

[7] V.V. Popov, V.N. Kaigorodov, E.N. Popova and A.V. Stolbovsky, Mössbauer emission spectroscopy of grain boundaries on poly- and nanocrystalline niobium, Bull. Russ. Acad. Sci. Phys. 71 (2007) 1244-1248.

DOI: 10.3103/s1062873807090110

Google Scholar

[8] A.V. Stolbovskii and E.N. Popova, Study of the grain boundary structure in submicrocrystalline niobium after equal-channel angular pressing, Bull. Russ. Acad. Sci. Phys. 74 (2010) 358-362.

DOI: 10.3103/s1062873810030159

Google Scholar

[9] V.V. Popov, A.V. Sergeev and A.V. Stolbovsky, Emission nuclear gamma-resonance spectroscopy of grain boundaries in coarse-grained and ultrafine-grained polycrystalline Mo, Defect and Diffusion Forum. 364 (2015) 147-156.

DOI: 10.4028/www.scientific.net/ddf.364.147

Google Scholar

[10] V.V. Popov, A.V. Stolbovsky, A.V. Sergeev and V.A. Semionkin, Mössbauer spectroscopy of grain boundaries in ultrafine-grained materials produced by severe plastic deformation, Bull. Russ. Acad. Sci. Phys. 81 (2017) 951-955.

DOI: 10.3103/s106287381707022x

Google Scholar

[11] S.V. Divinski, Grain boundary diffusion in severely deformed metals: State of the art and unresolved issues, Diffusion Foundations. 5 (2015) 57-73.

DOI: 10.4028/www.scientific.net/df.5.57

Google Scholar

[12] Yu.G. Krasnoperova, L.M. Voronova, M.V. Degtyarev, T.I. Chashchukhina and N.N. Resnina, Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation, Phys. Met. Metallogr. 116 (2015) 79-86.

DOI: 10.1134/s0031918x15010081

Google Scholar

[13] A.V. Stolbovsky, V.V. Popov, E.N. Popova and V.P. Pilyugin, Structure, thermal stability, and state of grain boundaries of copper subjected to high-pressure torsion at cryogenic temperatures, Bull. Russ. Acad. Sci. Phys. 78 (2014) 908-916.

DOI: 10.3103/s1062873814090299

Google Scholar

[14] V.V. Popov, E.N. Popova, A.V. Stolbovskii, V.P. Pilyugin and N.K. Arkhipova, Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained, Phys. Met. Metallogr. 113 (2012) 295-301.

DOI: 10.1134/s0031918x1203009x

Google Scholar

[15] V.V. Popov, A.V. Stolbovkiy, E.N. Popova and V.P. Pilyugin, Structure and thermal stability of Cu after severe plastic deformation, Defect and Diffusion Forum. 297-301 (2010) 1312-1321.

DOI: 10.4028/www.scientific.net/ddf.297-301.1312

Google Scholar

[16] M.Y. Alawadhi, S. Sabbaghianrad, Y.C. Wang, Y. Huang and T.G. Langdon, Characteristics of grain refinement in oxygen-free copper processed by equal-channel angular pressing and dynamic testing, Mater. Sci. Eng. A. 775 (2020) 138985.

DOI: 10.1016/j.msea.2020.138985

Google Scholar

[17] S.A. Bojarski, M.P. Harmer and G.S. Rohrer, Influence of grain boundary energy on the nucleation of complexion transitions, Scr. Mater. 88 (2014) 1-4.

DOI: 10.1016/j.scriptamat.2014.06.016

Google Scholar

[18] F. Emeis, M. Peterlechner, S.V. Divinski and G. Wilde, Grain boundary engineering parameters for ultrafine grained microstructures: Proof of principles by a systematic composition variation in the Cu-Ni system, Acta Mater. 150 (2018) 262-272.

DOI: 10.1016/j.actamat.2018.02.054

Google Scholar

[19] V.V. Kondratyev, A.G. Kesarev and I.L. Lomaev, Grain boundary diffusion in nanocrystalline materials produced by severe plastic deformation, Diffusion Foundations. 5 (2015) 129-143.

DOI: 10.4028/www.scientific.net/df.5.129

Google Scholar

[20] D. Saylor and G. Rohrer, Influence of grain-boundary misorientation on thermal groove geometry in ceramic polycrystals, J. Am. Ceram. Soc. 82 (1999) 1529-1536.

DOI: 10.1111/j.1151-2916.1999.tb01951.x

Google Scholar

[21] E. Rabkin, Y. Amouyal and L. Klinger, Scanning probe microscopy study of grain boundary migration in NiAl, Acta Mater. 52 (2004) 4953-4959.

DOI: 10.1016/j.actamat.2004.06.027

Google Scholar

[22] P.Y. Amouyal and E. Rabkin, A scanning force microscopy study of grain boundary energy in copper subjected to equal channel angular pressing, Acta Mater. 55 (2007) 6681-6689.

DOI: 10.1016/j.actamat.2007.08.023

Google Scholar

[23] P. Cantwell, M. Tang, S. Dillon, J. Luo, G. Rohrer and M. Harmer, Grain boundary complexions, Acta Mater. 62 (2014) 1-48.

DOI: 10.1016/j.actamat.2013.07.037

Google Scholar

[24] J. Zimmerman, A. Sharma, S.V. Divinski and E. Rabkin, Relative grain boundary energies in ultrafine grain Ni obtained by high pressure torsion, Scr. Mater. 182 (2020) 90-93.

DOI: 10.1016/j.scriptamat.2020.03.008

Google Scholar

[25] R.J. Behm, N. Garcia, and H. Rohrer (eds.), Scanning Tunneling Microscopy and Related Methods, Kluwer Academic Puplishers, Springer Netherlands, (1990).

Google Scholar

[26] V.I. Vettegren', S.Sh. Rakhimov and V. N. Svetlov, Evolution of the surface relief of annealed copper and palladium samples under load, Phys. Solid State. 39 (1997) 1389-1392.

DOI: 10.1134/1.1130085

Google Scholar

[27] P.V. Kuznetsov, T.V. Rakhmatulina, I.V. Belyaeva and A. V. Korznikov, Energy of internal interfaces as a characteristic of the structural evolution of ultrafine-grained copper and nickel after annealing, Phys. Met. Metallogr. 118 (2017) 241-248.

DOI: 10.1134/s0031918x17030115

Google Scholar

[28] A. Stolbovsky, The use of finite mixture models and EM-algorithm to analyze grain structure in HPT-nanostructured metallic materials, IOP Conf. Ser.: Mater. Sci. Eng. 969 (2020) 012084.

DOI: 10.1088/1757-899x/969/1/012084

Google Scholar

[29] B.S. Everitt and A. Skrondal, The Cambridge Dictionary of Statistics, fourth ed., Cambridge University Press, New York, (2010).

Google Scholar

[30] Yu.R. Kolobov, N.V. Girsova, K.V. Ivanov, G.P. Grabovetskaya and O.B. Perevalova, The structural features and mechanical properties of submicrocrystalline nickel produced by severe plastic deformation, Russian Physics Journal. 45 (2002) 547-552.

DOI: 10.1023/a:1021139116678

Google Scholar