[1]
V.B. Ginzburg, Steel-Rolling Technology: Theory and Practice, Marcel Dekker, New-York, (1989).
Google Scholar
[2]
Z. Wusatowski, Fundamentals of Rolling, Pergamon Press, Katowice, (1969).
Google Scholar
[3]
I.I. Onishhenko, P.I. Kucenko, A.I. Kucenko, Theory of Continuous Rolling, ZSIA, Zaporozh'e, (1998).
Google Scholar
[4]
A.P. Chekmarev, V.P. Grechko, V.V. Getmanec, B.V. Khovrin, Rolling on Small-Section Mill, Metallurgy, Moscow, (1967).
Google Scholar
[5]
V.N. Vydrin, A.S. Fedosenko, V.N. Krainov, Process of Continuous Rolling, Metallurgy, Moscow, (1970).
Google Scholar
[6]
A.A. Radionov, I.Yu. Andryushin, A.S. Karandaev, V.R. Khramshin, R.R. Khramshin, Study of the effect of the rolling mill inter-stand tension on the strip gauge deviation, Applied Mechanics and Materials. 756 (2015) 414-419.
DOI: 10.4028/www.scientific.net/amm.756.414
Google Scholar
[7]
V.R. Khramshin, A.A. Radionov, G.P. Kornilov, K.E. Odinsov, Improvement of electric and mechanical system for automated strip tension control at continuous wide-strip hot-rolling mill, Procedia Engineering. 150 (2016) 11-17.
DOI: 10.1016/j.proeng.2016.07.208
Google Scholar
[8]
J.Z. Zhang, X.P. Zhang, Formulas of tension of continuous rolling process, Acta Metallurgica Sinica. 6 (2007) 403-416.
DOI: 10.1016/s1006-7191(08)60003-4
Google Scholar
[9]
V.V. Shokhin, O.V. Permyakova, The study of continuous rolling mill inter-stand tension inferential control systems, Procedia Engineering. 129 (2015) 231-238.
DOI: 10.1016/j.proeng.2015.12.038
Google Scholar
[10]
S.O. Nepryakhin, O.V. Vodopyanova, Research into the effect of speed mismatch during continuous rolling on the process parameters, Materials Engineering and Technologies for Production and Processing VI, Solid State Phenomena. 316 (2021) 208-214.
DOI: 10.4028/www.scientific.net/ssp.316.208
Google Scholar
[11]
V.L. Kolmogorov, S.V. Smirnov, The restoration of the margin of metal plasticity after cold deformation, Journal of materials processing technology. 74 (1998) 83-88.
DOI: 10.1016/s0924-0136(97)00253-7
Google Scholar
[12]
V.G. Burdukovsky, V.L. Kolmogorov, B.A. Migachev, Prediction of resources of materials of machine and construction elements in the process of manufacture and exploitation, Journal of materials processing technology. 55 (1995) 292-295.
DOI: 10.1016/0924-0136(95)02020-9
Google Scholar
[13]
V.L. Kolmogorov, Model of metal fracture in cold deformation and ductility restoration by annealing, in: S.K. Gosh, M. Predeleanu (Eds.), Materials Processing Defects, Elsevier, Amsterdam, (1995).
DOI: 10.1016/s0922-5382(05)80015-7
Google Scholar
[14]
V.L. Kolmogorov, Friction and wear model for a heavily loaded sliding pair. Part I. Metal damage and fracture model, Wear. 194 (1996) 71-79.
DOI: 10.1016/0043-1648(95)06718-3
Google Scholar
[15]
V.L. Kolmogorov, A.A. Bogatov, B.A. Migachev, E.G. Zudov, Ju.E. Freydenzon, M.E. Freydenzon, Plasticity and fracture, Metallurgiya, Moscow, (1977).
Google Scholar
[16]
V.L. Kolmogorov, Stresses, Strains, Fracture, Metallurgiya, Moscow, (1970).
Google Scholar
[17]
A.A. Bogatov, O.I. Mizhiritsky, S.V. Smirnov, Metal Plasticity Margin in Metal Forming, Metallurgiya, Moscow, (1984).
Google Scholar
[18]
A.Yu. Postylyakov, Yu.V. Inatovich, Yu.N. Loginov, Comporative analysis of metal rolling ability in simple shape passes, Production of Rolled Metal. 2 (2019) 12-17.
Google Scholar
[19]
V.M. Salganik, D.N. Tulupov, Research and improvement of continuous rolling process with tension, Production of Bars. 7 (2014) 26-31.
Google Scholar
[20]
L.S. Kohan, B.F. Belelyubsky, M.I. Lapteva, Effect of tension on the reduce power consumption during hot rolling, Structural Mechanics of Engineering Constructions and Buildings. 1 (2012) 70-73.
Google Scholar