Structure and Phase Transformations in High Nitrogen and High Interstitial Steels of Different Alloying Systems - Short Review

Article Preview

Abstract:

The features of the structure evolution under thermal effect of Cr, Cr-Ni, Cr-Ni-Mn, and Cr-Mn-austenitic stainless steels with high nitrogen content and a total high content of carbon and nitrogen are analyzed. When studying the structure, we used light and electron microscopy, X-ray diffraction, dilatometry analysis and electrical resistance measurements. Fine structure and aging processes of austenite, nature and morphology of excess phases, as well as character of phase transformations and their relationship with the properties of steels have been studied. It is shown that Cr-Mn-steels with a high content of (C + N), having a homogeneous structure of austenite without excess phases, surpass Cr-Ni austenitic steels in mechanical and corrosion properties, have higher process ability than Cr-Mn-N-steel and are comparable with them in mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

167-172

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Foct, Interstitial alloying by design aimed at making smart components, in U.K. Mudali, M.G. Pujar, R. Baldev (Eds.), Proceedings of 11th International conference «High Nitrogen Steels and Interstitial Alloys» (HNS 2012), Chennai, India, 2012, pp.1-10.

Google Scholar

[2] K.L.L. Joseph, H.L. Kin, H.S. Chan (Eds.), Stainless Steels: An Introduction and Their Recent Development, Bentham Science Publishers, (2012).

Google Scholar

[3] V.G. Gavrilyuk, Physical bases of nitrogenous steels, in: Merson D.L. (Eds.), Perspective Materials: Structure and Research Methods, TSU, MISiS, Togliatti, 2007, pp.5-74.

Google Scholar

[4] H. Berns, V. Gavriljuk, S. Riedner, High Interstitial Stainless Steels, Berlin, Springer, (2013).

Google Scholar

[5] B.D. Shanina, V.G. Gavriljuk, H. Berns, F. Schmalt, Concept of a new high-strength austenitic stainless steel, Steel Res. 73(3) (2002) 105-113.

DOI: 10.1002/srin.200200181

Google Scholar

[6] F. Schmalt, H. Berns, V.G. Gavriljuk, Mechanical properties of a stainless austenitic CrMnCN steel, in: Proceedings of the 7th International Conference on High Nitrogen Steels, HNS 2004, pp.437-446.

DOI: 10.1002/srin.200706274

Google Scholar

[7] V.G. Gavriljuk, H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications (Engineering Materials), Heidelberg: Springer, Berlin, (1999).

DOI: 10.1007/978-3-662-03760-7

Google Scholar

[8] V.G. Gavriljuk, H. Berns, Precipitates in tempered stainless martensitic steels alloyed with nitrogen, carbon or both, Mat. Sci. Forum. 318-320 (1999) 71-80.

DOI: 10.4028/www.scientific.net/msf.318-320.71

Google Scholar

[9] O.A. Bannykh, V.M. Blinov, V.V. Berezovskaya, et al., Effect of the g®a martensitic transformation in Fe-Cr-N alloys on their stress-corrosion cracking, Russian Metallurgy (Metally). 4 (2005) 310-314.

Google Scholar

[10] J. Kunze, Nitrogen and Carbon in Iron and Steel: Thermodynamics (Physical Research), Akademie Verlag, Berlin, (1990).

Google Scholar

[11] A. Devasenapathi, M. Asawa, Effect of high Mn on SCC behaviour of an austenitic stainless steel in 42% boiling MgCl2 solution, J. Mater. Sci. Lett. 16 (1997) 1363-1365.

Google Scholar

[12] V.V. Berezovskaya, M.V. Kostina, E.V. Blinov, et al., Effect of heat treatment on the structure of high-nitrogen austenitic corrosion-resistant 04Cr22Mn17Ni8Mo2VN and 07Cr20Mn9Ni8MoVN steels, Russian Metallurgy (Metally). 2 (2009) 146-153.

DOI: 10.1134/s0036029509020086

Google Scholar

[13] V.V. Berezovskaya, O.A. Bannykh, M.V. Kostina, et al., Effect of heat treatment on the structure and properties of high-nitrogen austenitic corrosion-resistant 03Cr20Mn11Ni7Mo2N steel, Russian Metallurgy (Metally). 3 (2010) 183-192.

DOI: 10.1134/s0036029510030079

Google Scholar

[14] V.G. Gavriljuk, A.I. Tyshchenko, O.N. Razumov, et al., Corrosion-resistant analogue of Hadfield steel, Mater. Sci. Eng. A. 420(1-2) (2006) 47-54.

DOI: 10.1016/j.msea.2006.01.066

Google Scholar

[15] Z. Yuan, Q. Dai, X. Cheng, et al., Impact properties of high-nitrogen austenitic stainless steels, Mater. Sci. Eng. A. 475(1-2) (2008) 202-206.

DOI: 10.1016/j.msea.2007.04.122

Google Scholar

[16] R. Miura, H. Nakajima, Y. Takahashi, K. Yoshida, 32Mn-7Cr austenitic steel for cryogenic applications, in: A.F. Clark, R.P. Reed (Eds.), Advances in Cryogenic Engineering Materials. Advances in Cryogenic Engineering, vol. 30, Springer, Boston, MA, 1984, pp.245-252.

DOI: 10.1007/978-1-4613-9868-4_30

Google Scholar

[17] R. Fu, Y. Zheng, Y. Ren, Mechanical properties of 32Mn-7Cr-0.6Mo-0.3N austenitic steel for cryogenic applications, J. Mater. Eng. Perform. 10(4) (2001) 456-459.

DOI: 10.1361/105994901770344881

Google Scholar

[18] F.C. Hull, Delta ferrite and martensite formation in stainless steels, Weld. J. 52(5)(1973) 193-203.

Google Scholar

[19] M. Kemp, A. Bennekom, F. Robinson, Evaluation of corrosion and mechanical properties of a range of experimental Cr-Mn stainless steels, Mater. Sci. Eng. A. 199(2) (1995) 183-194.

DOI: 10.1016/0921-5093(94)09694-5

Google Scholar

[20] V.V. Berezovskaya, E.A. Merkushkin, Y.A. Raskovalova, Structure formation in high-nitrogen steel during heat treatment, Solid State Phenomena. 284 (2018) 447-454.

DOI: 10.4028/www.scientific.net/ssp.284.447

Google Scholar

[21] V.G. Gavriljuk, B. D. Shanina, H. Berns, Ab initio development of a high-strength corrosion-resistant austenitic steel, Acta Materialia. 56 (2008) 5071-5082.

DOI: 10.1016/j.actamat.2008.06.021

Google Scholar

[22] H. Berns, V. Gavriljuk, S. Riedner, High Interstitial Stainless Steels, Berlin, Springer, (2013).

Google Scholar