Microstructure, Phase Composition, Physical and Mechanical Properties of Titanium Alloy VT23 Hot-Extruded Tube

Article Preview

Abstract:

Macro-, microstructural, fine structure, phase composition, texture and complex of physical and mechanical properties in titanium alloy VT23 (Ti-5.5Al-4.7V-2.5Mo-1.1Cr-0.7Fe, wt. %) tube were studded by the macroanalysis, optical and transmission microscopy, X-ray phase analysis, durometry and microindentation methods. A close relationship between the structural-textural-phase state formed during the extrusion and the obtained level of strength, plastic, durometric properties and the contact modulus of elasticity in a hot-extruded tube has been established.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

324-329

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Ilyin, B.A. Kolachev, I.S. Polkin, Titanium Alloys. Composition, Structure, Properties, Reference Book, VILS-MATI, Moscow, (2009).

Google Scholar

[2] A.I. Khorev, High-strength titanium alloy VT23 and its applications in advanced welded and brazed structures, Welding International. 24(4) (2010) 276-281.

DOI: 10.1080/09507110903319925

Google Scholar

[3] A.I. Gorshkov, T.V. Filatova, Yu.D. Mikhalev, Structural strength of welded joints from a combination of titanium alloys VT35 + VT23, Aviation Industry. 5 (1992) 46-48.

Google Scholar

[4] A.G. Illarionov, O.A. Koemets, S.M. Illarionova, A.A. Popov, Vacuum annealing of welded joints of titanium alloys OT4 – VT6, VT20 – VT6 and VT23 – VT6, Metal Science and Heat Treatment. 62(7-8) (2020) 430-435.

DOI: 10.1007/s11041-020-00580-7

Google Scholar

[5] D.V. Lazurenko, I.A. Bataev, V.I. Mali, M.A. Esikov, A.A. Bataev, Effect of hardening heat treatment on the structure and properties of a three-layer composite of type VT23 – 08Ps – 45KhNM, obtained by explosion welding, Metal Science and Heat Treatment. 60(9-10) (2019) 651-658.

DOI: 10.1007/s11041-019-00333-1

Google Scholar

[6] A.I. Khorev, Scientific fundamentals of producing high and superhigh structural strength of weldable titanium alloys, Welding International. 27(1) (2013) 67-76.

DOI: 10.1080/09507116.2012.695157

Google Scholar

[7] A.G. Illarionov, Y.I. Kosmatskii, A.E. Gornostaeva, F.V. Vodolazskii, Deformation and Heat Treatment of Titanium Alloy Tubes, UrFU, Ekaterinburg, (2019).

Google Scholar

[8] V.K. Aleksandrov, N.F. Anoshkin, A.F. Belov, Semifinished Products from Titanium Alloys, ONTI VILS, Moscow, (1996).

Google Scholar

[9] TU 14-3-1343-85, Seamless Cold-deformed Tubes of Alloy VT23, (1985).

Google Scholar

[10] L.A. Nikolsky, S.Z. Figlin, V.V. Boytsov, Yu.G. Kalpin, A.V. Bakharev, Hot Stamping and Pressing of Titanium Alloys, Mashinostroenie, Moscow, (1975).

Google Scholar

[11] H.M. Rietveld, The rietveld method: a retrospection, Z. Kristallogr. 225 (2010) 545-547.

Google Scholar

[12] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mat. Research. 7(6) (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[13] N.F. Anoshkin, G.A. Bochvar, V.A. Livanov, Metallography of Titanium Alloys, Metallurgy, Moscow, (1980).

Google Scholar

[14] A.A. Ilyin, M.Yu. Kollerov, M.G. Ekimyan, V.V. Alekseev, Effect of heating temperature and cooling rate on the phase composition of VT23 alloy, Metal Science and Heat Treatment. 29(3) (1987) 236-239.

DOI: 10.1007/bf00772877

Google Scholar

[15] V.N. Gridnev, O.M. Ivasishin, S.P. Oshkaderov, Physical foundations of high-speed thermal hardening of titanium alloys, Naukova Dumka, Kiev, (1986).

Google Scholar

[16] U. Zwicker, Titan and its Alloys, Mir, Moscow, (1979).

Google Scholar

[17] A.A. Babareko, Metal and alloy textures, in: Results of Science and Technology, Series. Metallurgy and heat treatment, VINITI, Moscow, 13, 1980, pp.79-148.

Google Scholar

[18] S.V. Danilov, A.A. Redikul'tsev, M.L. Lobanov, Texture of hot-rolled sheet Fe-3% Si alloy, Solid State Phenomena. 265 (2017) 895-899.

DOI: 10.4028/www.scientific.net/ssp.265.895

Google Scholar

[19] M.L. Lobanov, A.A. Redikul'tsev, G.M. Rusakov, S.V. Danilov, Effect of carbon on texture formation in electrical steel Fe – 3% Si under hot rolling, Metal Science and Heat Treatment. 56(11-12) (2015) 646-649.

DOI: 10.1007/s11041-015-9815-4

Google Scholar

[20] I.Y. Pyshmintsev, Y.I. Kosmatskii, E.A. Filyaeva, A.G. Illarionov, N.A. Barannikova, Alloy Ti–3Al–2.5V hot-extruded pipe metal structure and properties, Metallurgist. 62(3-4) (2018) 374-379.

DOI: 10.1007/s11015-018-0671-5

Google Scholar

[21] A.G. Illarionov, F.V. Vodolazskiy, M.S. Karabanalov, N.A. Barannikova, Ya.I. Kosmatskiy, The effect of annealing on the structure, texture and properties of a hot-pressed tube of PT-1M titanium alloy, Metal Science and Heat Treatment. 62(7-8) (2020) 442-447.

DOI: 10.1007/s11041-020-00582-5

Google Scholar

[22] S.P. Belov, M. Ya. Brun, S.G. Glazunov, A. A. Ilyin, Titanium Alloys. Metallurgy of Titanium and its Alloys, Metallurgy, Moscow, (1992).

Google Scholar

[23] S.G. Glazunov, V.N. Moiseev, Structural Titanium Alloys, Metallurgy, Moscow, (1974).

Google Scholar