[1]
A.S. Rogachev, A.S. Mukasyan, Combustion for Material Synthesis, CRC Press, (2015).
Google Scholar
[2]
A. Varma, A.S. Rogachev, A.S. Mukasyan, S. Hwang, Combustion synthesis of advanced materials: principles and applications, Advances in Chemical Engineering. 24 (1998) 79-226.
DOI: 10.1016/s0065-2377(08)60093-9
Google Scholar
[3]
K. Morsi, The diversity of combustion synthesis processing, Journal of Materials Science. 47 (2011) 68-92.
Google Scholar
[4]
D. Gupta, Diffusion Processes in Advanced Technological Materials, Springer, Norwich, New York, (2005).
Google Scholar
[5]
B.B Khina, B. Formanek, On the physicochemical mechanism of the influence of preliminary mechanical activation on self-propagating high-temperature synthesis, Solid State Phenomena. 138 (2008) 159-164.
DOI: 10.4028/www.scientific.net/ssp.138.159
Google Scholar
[6]
S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials, Current Opinion in Solid State & Materials Science. 12(3-4) (2008) 44-50.
DOI: 10.1016/j.cossms.2008.12.002
Google Scholar
[7]
A.S. Mukasyan, B.B. Khina, R.V. Reeves, S.F. Son, Mechanical activation and gasless explosion. Nanostructural aspects, Chemical Engineering Journal. 174 (2011) 677-686.
DOI: 10.1016/j.cej.2011.09.028
Google Scholar
[8]
T.P. Yadav, R.M. Yadav, D.P. Singh, Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites, Nanoscience and Nanotechnology. 2(3) (2012) 22-48.
DOI: 10.5923/j.nn.20120203.01
Google Scholar
[9]
A.S. Mukasyan, J.D.E. White, D.Y. Kovalev, N.A. Kochetov, V.I. Ponomarev, S.F. Son, Dynamics of phase transformation during thermal explosion in the Al-Ni system: Influence of mechanical activation, Physica B: Condensed Matter. 405(2) (2010) 778-784.
DOI: 10.1016/j.physb.2009.10.001
Google Scholar
[10]
A.S. Shteinberg, Y.-C. Lin, S.F. Son, A.S. Mukasyan, Kinetics of high temperature reaction in Ni-Al System: Influence of mechanical activation, Journal of Physical Chemistry A. 114(20) (2010) 6111-6116.
DOI: 10.1021/jp1018586
Google Scholar
[11]
K.V. Manukyan, B.A. Mason, L.J. Groven, Y.C. Lin, M. Cherukara, S.F. Son, A. Strachan, A.S. Mukasyan, Tailored reactivity of Ni+Al nanocomposites: microstructural correlations, The Journal of Physical Chemistry. 116(39) (2012) 21027-21038.
DOI: 10.1021/jp303407e
Google Scholar
[12]
M.V. Loginova, V.I. Yakovlev, V.Y. Filimonov, A.A. Sitnikov, A.V. Sobachkin, S.G. Ivanov, A.V. Gradoboev, Formation of structural states in mechanically activated powder mixtures Ti + Al exposed to gamma irradiation, Letters on Materials. 8(2) (2018) 129-134.
DOI: 10.22226/2410-3535-2018-2-129-134
Google Scholar
[13]
M. Loginova, A. Sobachkin, A. Sitnikov, V. Yakovlev, V. Filimonov, A. Myasnikov, M. Sharafutdinov, B. Tolochko, In situ synchrotron research of phase formation in mechanically activated 3Ti+Al powder composition during high-temperature synthesis under the condition of heating with high-frequency electromagnetic fields, Journal of Synchrotron Radiation. 26 (2019) 422-429.
DOI: 10.1107/s1600577518017691
Google Scholar
[14]
V.Yu Filimonov, M.V. Loginova, S.G. Ivanov, A.A. Sitnikov, V.I. Yakovlev, A.V. Sobachkin, A.Z. Negodyaev, A.Yu Myasnikov, Peculiarities of phase formation processes in activated Ti + Al powder mixture during transition from combustion synthesis to high-temperature annealing, Combustion Science and Technology. 192(3) (2020) 457-470.
DOI: 10.1080/00102202.2019.1571053
Google Scholar
[15]
V.Yu. Filimonov, M.V. Loginova, A.V. Sobachkin, S.G. Ivanov, A.A. Sitnikov, V.I. Yakovlev, A.Z. Negodyaev, A.Yu. Myasnikov, Structure formation during high-temperature synthesis in an activated Ti + Al powder mixture, Inorganic Materials. 55 (2019) 1097-1103.
DOI: 10.1134/s0020168519110049
Google Scholar
[16]
M. Loginova, A. Sobachkin, A. Sitnikov, V. Yakovlev, V. Filimonov, A. Myasnikov, M. Sharafutdinov, B. Tolochko, A. Gradoboev, Synchrotron in situ studies of mechanical activation treatment and γ-radiation impact on structural-phase transitions and high-temperature synthesis parameters during the formation of γ-(TiAl) compound, Journal of Synchrotron Radiation. 26(5) (2019) 1671-1678.
DOI: 10.1107/s1600577519010014
Google Scholar
[17]
H.C. Yi, A. Petric, J.J. Moore, Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds, Journal of Material Science. 27 (1992) 6797-6806.
DOI: 10.1007/bf01165971
Google Scholar
[18]
J.D.E. White, R.V. Reeves, S.F. Son, A.S. Mukasyan, Thermal explosion in Al-Ni system: Influence of mechanical activation, Journal of Physical Chemistry A. 113(48) (2009) 13541-13547.
DOI: 10.1021/jp905175c
Google Scholar
[19]
V.Yu. Filimonov, K.B. Koshelev, A.A. Sytnikov, Thermal modes of heterogeneous exothermic reactions. Solid-phase interaction, Combustion and Flame. 185 (2017) 93-104.
DOI: 10.1016/j.combustflame.2017.06.020
Google Scholar
[20]
A.S. Rogachev, N.F. Shkodich, S.G. Vadchenko, F. Baras, D.Yu. Kovalev, S. Rouvimov, A.A. Nepapushev, A.S. Mukasyan, Influence of the high energy ball milling on structure and reactivity of the Ni + Al powder mixture, Journal of Alloys and Compounds. 577 (2013) 600-605.
DOI: 10.1016/j.jallcom.2013.06.114
Google Scholar