[1]
K.S. Vecchio, Synthetic multifunctional metallic-intermetallic laminate composites, The Journal of The Minerals. 57 (2005) 25-31.
DOI: 10.1007/s11837-005-0229-4
Google Scholar
[2]
M. Palm, L.C. Zhang, F. Stein, G. Sauthoff, Phases and phase equilibria in the Al rich part of the Al-Ti system above 900C, Intermetallics. 10 (2002) 523-540.
DOI: 10.1016/s0966-9795(02)00022-5
Google Scholar
[3]
R. Przeliorz, M. Goral, G. Moskal, L. Swadzba, The relationship between specific heat capacity and oxidation resistance of TiAl alloys, Journal of Achievements of Materials and Manufacturing Engineering. 21 (2007) 48-50.
Google Scholar
[4]
A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey, Resistance-curve and fracture behavior of Ti-Al3-Ti metallic intermetallic laminate (MIL) composites, Acta Materialia. 51 (2003) 2933-2957.
DOI: 10.1016/s1359-6454(03)00108-3
Google Scholar
[5]
F.J.J. van Loo, G.D. Rieck, Diffusion in the titanium-aluminium system - II. Interdiffusion in the composition range between 25 and 100 at.% Ti, Acta Metallurgica. 21(1) (1973) 73-84.
DOI: 10.1016/0001-6160(73)90221-6
Google Scholar
[6]
F.J.J. van Loo, G.D. Rieck, Diffusion in the titanium-aluminium system - I. Interdiffusion between solid Al and Ti or Ti-Al alloys, Acta Metallurgica. 21(1) (1973) 61-71.
DOI: 10.1016/0001-6160(73)90220-4
Google Scholar
[7]
L. Xu, Y.Y. Cui, Y.L. Hao, R. Yang, Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Materials Science and Engineering: A. 435-436 (2006) 638-647.
DOI: 10.1016/j.msea.2006.07.077
Google Scholar
[8]
M. Mirjalili, M. Soltanieh, K. Matsuura, M. Ohno, On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple, Intermetallics. 32 (2013) 297-302.
DOI: 10.1016/j.intermet.2012.08.017
Google Scholar
[9]
N. Thiyaneshwaran, K. Sivaprasad, B. Ravisankar, Nucleation and growth of TiAl3 intermetallic phase in diffusion bonded Ti/Al metal intermetallic laminate, Scientific Reports. 8 (2018) 16797.
DOI: 10.1038/s41598-018-35247-0
Google Scholar
[10]
A.V. Rogov, Y.V. Kapustin, Y.V. Martynenko, Factors determining the efficiency of magnetron sputtering. Optimization criteria, Technical Physics. 60(2) (2015) 283-291.
DOI: 10.1134/s1063784215020206
Google Scholar
[11]
V.Yu Filimonov, M.V. Loginova, S.G. Ivanov, A.A. Sitnikov, V.I. Yakovlev, A.V. Sobachkin, A.Z. Negodyaev, A.Yu Myasnikov, Peculiarities of phase formation processes in activated Ti + Al powder mixture during transition from combustion synthesis to high-temperature annealing, Combustion Science and Technology. 192(3) (2020) 457-470.
DOI: 10.1080/00102202.2019.1571053
Google Scholar
[12]
V.Yu Filimonov, M.V. Loginova, S.G. Ivanov, A.A. Sitnikov, V.I. Yakovlev, A.V. Sobachkin, A.Z. Negodyaev, A.Yu. Myasnikov, B.P. Tolochko, M.R. Sharafutdinov, Dynamics of structure formation processes in mechanically activated powder mixture Ti+Al under conditions of continuous heating. High temperature stage, Materials Chemistry and Physics. 243 (2020) 122611.
DOI: 10.1016/j.matchemphys.2019.122611
Google Scholar
[13]
V.Yu. Filimonov, M.V. Loginova, A.V. Sobachkin, S.G. Ivanov, A.A. Sitnikov, V.I. Yakovlev, A.Z. Negodyaev, A.Yu. Myasnikov, Structure formation during high-temperature synthesis in an activated Ti + Al powder mixture, Inorganic Materials. 55 (2019) 1097-1103.
DOI: 10.1134/s0020168519110049
Google Scholar
[14]
A.L. Kameneva, N.I. Sushentsov, A.Yu Klochkov, Dependence of morphology, properties, thermal and stressed states of films on process parameters of electric arc evaporation, Tekhnologiya Metallov. 11 (2010) 38-42.
Google Scholar
[15]
A.L. Kameneva, Evolution of notions on structural zones of films formed by vacuum processes, Powder Metallurgy and Multifunctional Coatings. News of Higher School. 4 (2011) 41-48.
Google Scholar
[16]
U.C. Oh, Jung Ho Je, Effects of strain energy on the preferred orientation of TiN thin films, Journal of Applied Physics. 74(3) (1993) 1692-1696.
DOI: 10.1063/1.355297
Google Scholar
[17]
A. Nishat, L. Junqing, K.J. Yun, Ch.G. Lee, H.Y. Jae, A. Faheem, Study on structural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow, Materials Chemistry and Physics. 134(2-3) (2012) 839-844.
DOI: 10.1016/j.matchemphys.2012.03.078
Google Scholar
[18]
M. Loginova, A. Sobachkin, A. Sitnikov, V. Yakovlev, V. Filimonov, A. Myasnikov, M. Sharafutdinov, B. Tolochko, In situ synchrotron research of phase formation in mechanically activated 3Ti+Al powder composition during high-temperature synthesis under the condition of heating with high-frequency electromagnetic fields, Journal of Synchrotron Radiation. 26 (2019) 422-429.
DOI: 10.1107/s1600577518017691
Google Scholar
[19]
A.V. Sobachkin, A. Yu. Myasnikov, A.A. Sitnikov, M.R. Sharafutdinov, Adjustment of induction high-temperature synthesis to in situ synchrotron study of SHS-mixtures on the example of Ti-Al system, IOP Conference Series: Materials Science and Engineering. 483 (2019) 012061.
DOI: 10.1088/1757-899x/483/1/012061
Google Scholar
[20]
B.B. Bokhonov, M.A. Korchagin, Application of mechanical alloying and self-propagating synthesis for preparation of stable decagonal quasicrystals, Journal of Alloys and Compounds. 368 (2004) 152-156.
DOI: 10.1016/j.jallcom.2003.07.014
Google Scholar
[21]
K.A. Philpot, Z.A. Munir, J.B. Holt, An investigation of the synthesis of nickel aluminides through gasless combustion, Journal of Materials Science. 22(1) (1987) 159-169.
DOI: 10.1007/bf01160566
Google Scholar
[22]
A.V. Sobachkin, M.V. Loginova, A.A. Sitnikov, V.I. Yakovlev, V.Yu. Filimonov, A.V. Gradoboev, Stimulation of processes of self-propagating high temperature synthesis in system Ti + Al at low temperatures by influence of γ-quanta, IOP Conference Series: Materials Science and Engineering. 327 (2018) 032051.
DOI: 10.1088/1757-899x/327/3/032051
Google Scholar
[23]
X. Zhu, T. Zhang, V. Morris, D. Marchant, Combustion synthesis of NiAl/Al2O3 composites by induction heating, Intermetallics. 18(6) (2010) 1197-1204.
DOI: 10.1016/j.intermet.2010.03.009
Google Scholar
[24]
V.I. Yakovlev, A.V. Sobachkin, A.A. Sitnikov, Application of self-propagating high-temperature synthesis and mechanoactivating treatment for producing multi-component composite alloying materials, Applied Mechanics and Materials. 379 (2013) 173-177.
DOI: 10.4028/www.scientific.net/amm.379.173
Google Scholar