[1]
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A. 375 (2004) 213-218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[2]
F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia. 61(15) (2013) 5743-5755.
DOI: 10.1016/j.actamat.2013.06.018
Google Scholar
[3]
C.-M. Lin, H.-L. Tsai, Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature, J Alloys Compd. 489 (2010) 619-622.
Google Scholar
[4]
M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen, Y.-S. Huang, Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy, Metall Mater Trans. A 37(5) (2006) 1363-1369.
DOI: 10.1007/s11661-006-0081-3
Google Scholar
[5]
A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Materials Science and Engineering. 533 (2012) 107-118.
DOI: 10.1016/j.msea.2011.11.045
Google Scholar
[6]
J.W. Yeh, Recent progress in high-entropy alloys, Annales de Chimie Science des Material. 31 (2006) 633-648.
DOI: 10.3166/acsm.31.633-648
Google Scholar
[7]
M.V. Karpets, O.M. Maliuchenko, Properties of a multicomponent high-entropy alloy AlCrFeCoNi doped with copper, Problems of Friction and Wear. 2 (2004) 103-111.
Google Scholar
[8]
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z-P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science. 61 (2014) 1-93.
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[9]
Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, An assessment on the future development of high-entropy alloys: Summary from a recent workshop, Intermetallic. 66 (2015) 67-76.
DOI: 10.1016/j.intermet.2015.06.021
Google Scholar
[10]
A.D. Pogrebnjak, A.A. Bagdasaryan, I.V. Yakushchenko, V.M. Beresnev, The structure and properties of high-entropy alloys and nitride coatings based on them, Russian Chemical Reviews. 83(11) (2014) 1027-1061.
DOI: 10.1070/rcr4407
Google Scholar
[11]
J.B. Cheng, X.B. Liang, B.S. Xu, Effect of Nb addition on the structure and mechanical behaviours of CoCrCuFeNi high-entropy alloy coatings, Surf. Coat. Technol. 240 (2014) 184-190.
DOI: 10.1016/j.surfcoat.2013.12.053
Google Scholar
[12]
B. Ren, Z.X. Liu, L. Shi, B. Cai, M.X. Wang, Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering, Appl. Surf. Sci., 257(16) (2011) 7172-7178.
DOI: 10.1016/j.apsusc.2011.03.083
Google Scholar
[13]
S.A. Firstov, Superhard coatings from high-entropy alloys, Science and Innovation. 9 (2013) 32-39.
Google Scholar
[14]
B. He, N. Zhang, D. Lin, Y. Zhang, F. Dong, D. Li, The phase evolution and property of FeCoCrNiAlTix high-entropy alloying coatings on Q253 via laser cladding, Coatings. 7(10) (2017) 157.
DOI: 10.3390/coatings7100157
Google Scholar
[15]
A.M. Kadyrmetov, D.A. Popov, A.V. Vikulin, V.I. Voronetsky, R.V. Stegantsev, Prospects of obtaining multicomponent coatings by atmospheric plasma spraying, Voronezh Scientific and Technical Bulletin. 4(26) (2018) 46-54.
Google Scholar
[16]
A.M. Kadyrmetov, S.N. Sharifullin, A.S. Pustovalov, Mathematical modeling of plasma deposition and hardening of coatings-switched electrical parameters, J. Phys.: Conf. Ser. 669 (2016) 012052.
DOI: 10.1088/1742-6596/669/1/012052
Google Scholar
[17]
G. Suhotchev, A. Kadyrmetov, E. Pamfilov, Strengthening of plasma-spraying coats by power impulse modulation of plasmatron direct arc, International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), Tomsk, Russia, 2015, pp.1-5.
DOI: 10.1109/meacs.2015.7414972
Google Scholar
[18]
A.M. Kadyrmetov, D.A. Popov, E.V. Snyatkov, A.A. Plakhotin, Prerequisites for obtaining wear-resistant metal coatings with a high-entropy structure by atmospheric plasma spraying, reflow, and hardening, IOP Conf. Series: Materials Science and Engineering. 939 (2020) 012030.
DOI: 10.1088/1757-899x/939/1/012030
Google Scholar
[19]
A.M. Kadyrmetov, D.A. Popov, E.V. Snyatkov, Investigation of multicomponent alloys created by atmospheric plasma spraying, in: Modern Problems and Directions of Development of Metallurgy and Heat Treatment of Metals and Alloys, Kursk, 2020, pp.78-82.
Google Scholar
[20]
A.M. Kadyrmetov, D.A. Popov, E.V. Snyatkov, Investigation of a multicomponent FeCoCrAlTiCuMo alloy coating applied by a combined process based on atmospheric plasma metallization, MATEC Web Conf. 329 (2020) 02005.
DOI: 10.1051/matecconf/202032902005
Google Scholar