Multiple Reflow Influence over the FeCoCrAlTiCuNiMo Coating Obtained by Plasma Metallization on its Wear Resistance under Dry Friction

Article Preview

Abstract:

The article presents the research results of the plasma jet multiple reflow effect over the multicomponent coating FeCoCrAlTiCuNiMo, obtained by plasma metallization in an open atmosphere, on its wear resistance under dry sliding friction. The research results indirectly confirm the influence of the coating entropy over the wear resistance increasing along of the reflow number growth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

475-481

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A. 375 (2004) 213-218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[2] F. Otto, A. Dlouhý, Ch. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia. 61(15) (2013) 5743-5755.

DOI: 10.1016/j.actamat.2013.06.018

Google Scholar

[3] C.-M. Lin, H.-L. Tsai, Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature, J Alloys Compd. 489 (2010) 619-622.

Google Scholar

[4] M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen, Y.-S. Huang, Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy, Metall Mater Trans. A 37(5) (2006) 1363-1369.

DOI: 10.1007/s11661-006-0081-3

Google Scholar

[5] A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Materials Science and Engineering. 533 (2012) 107-118.

DOI: 10.1016/j.msea.2011.11.045

Google Scholar

[6] J.W. Yeh, Recent progress in high-entropy alloys, Annales de Chimie Science des Material. 31 (2006) 633-648.

DOI: 10.3166/acsm.31.633-648

Google Scholar

[7] M.V. Karpets, O.M. Maliuchenko, Properties of a multicomponent high-entropy alloy AlCrFeCoNi doped with copper, Problems of Friction and Wear. 2 (2004) 103-111.

Google Scholar

[8] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z-P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science. 61 (2014) 1-93.

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[9] Z.P. Lu, H. Wang, M.W. Chen, I. Baker, J.W. Yeh, An assessment on the future development of high-entropy alloys: Summary from a recent workshop, Intermetallic. 66 (2015) 67-76.

DOI: 10.1016/j.intermet.2015.06.021

Google Scholar

[10] A.D. Pogrebnjak, A.A. Bagdasaryan, I.V. Yakushchenko, V.M. Beresnev, The structure and properties of high-entropy alloys and nitride coatings based on them, Russian Chemical Reviews. 83(11) (2014) 1027-1061.

DOI: 10.1070/rcr4407

Google Scholar

[11] J.B. Cheng, X.B. Liang, B.S. Xu, Effect of Nb addition on the structure and mechanical behaviours of CoCrCuFeNi high-entropy alloy coatings, Surf. Coat. Technol. 240 (2014) 184-190.

DOI: 10.1016/j.surfcoat.2013.12.053

Google Scholar

[12] B. Ren, Z.X. Liu, L. Shi, B. Cai, M.X. Wang, Structure and properties of (AlCrMnMoNiZrB0.1)Nx coatings prepared by reactive DC sputtering, Appl. Surf. Sci., 257(16) (2011) 7172-7178.

DOI: 10.1016/j.apsusc.2011.03.083

Google Scholar

[13] S.A. Firstov, Superhard coatings from high-entropy alloys, Science and Innovation. 9 (2013) 32-39.

Google Scholar

[14] B. He, N. Zhang, D. Lin, Y. Zhang, F. Dong, D. Li, The phase evolution and property of FeCoCrNiAlTix high-entropy alloying coatings on Q253 via laser cladding, Coatings. 7(10) (2017) 157.

DOI: 10.3390/coatings7100157

Google Scholar

[15] A.M. Kadyrmetov, D.A. Popov, A.V. Vikulin, V.I. Voronetsky, R.V. Stegantsev, Prospects of obtaining multicomponent coatings by atmospheric plasma spraying, Voronezh Scientific and Technical Bulletin. 4(26) (2018) 46-54.

Google Scholar

[16] A.M. Kadyrmetov, S.N. Sharifullin, A.S. Pustovalov, Mathematical modeling of plasma deposition and hardening of coatings-switched electrical parameters, J. Phys.: Conf. Ser. 669 (2016) 012052.

DOI: 10.1088/1742-6596/669/1/012052

Google Scholar

[17] G. Suhotchev, A. Kadyrmetov, E. Pamfilov, Strengthening of plasma-spraying coats by power impulse modulation of plasmatron direct arc, International Conference on Mechanical Engineering, Automation and Control Systems (MEACS), Tomsk, Russia, 2015, pp.1-5.

DOI: 10.1109/meacs.2015.7414972

Google Scholar

[18] A.M. Kadyrmetov, D.A. Popov, E.V. Snyatkov, A.A. Plakhotin, Prerequisites for obtaining wear-resistant metal coatings with a high-entropy structure by atmospheric plasma spraying, reflow, and hardening, IOP Conf. Series: Materials Science and Engineering. 939 (2020) 012030.

DOI: 10.1088/1757-899x/939/1/012030

Google Scholar

[19] A.M. Kadyrmetov, D.A. Popov, E.V. Snyatkov, Investigation of multicomponent alloys created by atmospheric plasma spraying, in: Modern Problems and Directions of Development of Metallurgy and Heat Treatment of Metals and Alloys, Kursk, 2020, pp.78-82.

Google Scholar

[20] A.M. Kadyrmetov, D.A. Popov, E.V. Snyatkov, Investigation of a multicomponent FeCoCrAlTiCuMo alloy coating applied by a combined process based on atmospheric plasma metallization, MATEC Web Conf. 329 (2020) 02005.

DOI: 10.1051/matecconf/202032902005

Google Scholar