[1]
A.A. Andreev, L.P. Sablev, S.N. Grigor'ev, Vacuum Arc Coatings, NSC KIPT, Kharkiv, (2010).
Google Scholar
[2]
S.G. Psakh'e, K.P Zol'nikov, I.S. Konovalenko, Synthesis and Properties of Nanocrystalline and Substructure Materials, Tomsk University Press, Tomsk, (2007).
Google Scholar
[3]
A. Kavalejro, D. de Khossona, Nanostructured Coatings, Technosphere, Moscow, (2011).
Google Scholar
[4]
M.M.M. Bilek, D.R. Mckenzie, R.N. Tarant et al., Plasma-based ion implantation utilizing a cathodic arc plasma, Surface and Coating Technology. 156 (2003) 136-142.
DOI: 10.1016/s0257-8972(02)00078-6
Google Scholar
[5]
W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials. 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[6]
B. Cantor, L.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering A. 375-377 (2004) 213-218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[7]
M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett. 2 (2014) 107-123.
Google Scholar
[8]
O.N. Senkov, J.M. Scott, S.V. Senkova, Miracle microstructure and room temperature properties of a highentropy TaNbHfZrTi alloy, J. of Alloys and Compounds. 509 (2011) 6043-6048.
DOI: 10.1016/j.jallcom.2011.02.171
Google Scholar
[9]
C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh, S.K. Chen, On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys, Materials Science and Engineering A. 528 (2011) 3581-3588.
DOI: 10.1016/j.msea.2011.01.072
Google Scholar
[10]
S.A. Firstov, V.F. Gorban', N.A. Krapivka, EH.P. Pechkovskij, N.I. Danilenko, M.V. Karpec, Mechanical properties of cast multicomponent alloys at high temperatures, Modern Problems of Physical Materials Science. 17 (2008) 126-139.
Google Scholar
[11]
M. Braica, V. Braica, M. Balaceanua, C.N. Zoitaa, A. Vladescua, E. Grigore, Characteristics of (TiAlCrNbY)C films deposited by reactive magnetron sputtering, Surface & Coatings Technology. 204 (2010) 2010-2014.
DOI: 10.1016/j.surfcoat.2009.10.049
Google Scholar
[12]
P.K. Huang, J.W. Yeh, Effects of nitrogen content on structure and mechanical properties of multi- (AlCrNbSiTiV)N coating element, Surface & Coatings Technology. 204 (2010) 1891-1896.
DOI: 10.1016/j.surfcoat.2009.01.016
Google Scholar
[13]
P.J. Martin, A. Bendavid, J.M. Cairney, M. Hoffman, Nanocomposite Ti-S-N, Zr-S-N, Ti-AlSi-N, Ti-Al-V-Si thin film coatings deposited by vacuum arc deposition, Surface and Coatings Technology. 200 (2005) 131-134.
DOI: 10.1016/j.surfcoat.2004.06.012
Google Scholar
[14]
O. I. Yurkova, V. V. Cherniavsky, O. I. Kravchenko, Formation of structure and phase composition of nanocrystalline CuNiAlFeCr alloy by the mechanical alloying method, Metallophysics and New Technologies. 36 (2014) 477-490.
DOI: 10.15407/mfint.36.04.0477
Google Scholar
[15]
V.G. Pushin, N.N. Kuranova, N.I. Kourov, R.Z. Valiev, EH.Z. Valiev, V.V. Makarov, A.V. Pushin. A.N. Uksusnikov, Baroelastic shape memory effects in titanium nickelide alloys subjected to plastic deformation under high pressure, Technical Physics Journal. 82 8 (2012) 67-75.
DOI: 10.1134/s106378421208018x
Google Scholar
[16]
P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Microstructure design of hard coating, Progress in Materials Science. 51 (2006) 1032-1114.
DOI: 10.1016/j.pmatsci.2006.02.002
Google Scholar
[17]
S.A. Firstov, V.F. Gorban', A.O. Andreev, N.A. Krapivka, Superhard coatings from high-entropy alloys, Science and Innovation. 9(5) (2013) 32-39.
Google Scholar