[1]
Z.D. Xiang, P.K. Datta, Effects of pack composition on the formation of aluminide coatings on alloy steels at 650 C, Journal of Materials Science. 40(8) (2005) 1959-1966.
DOI: 10.1007/s10853-005-1217-3
Google Scholar
[2]
X. He, Y. Li, L. Wang, Y. Sun, S. Zhang, High emissivity coatings for high temperature application: progress and prospect, Thin Solid Films. 517(17) (2009) 5120-5129.
DOI: 10.1016/j.tsf.2009.03.175
Google Scholar
[3]
E.J. Opila, Volatility of common protective oxides in high-temperature water vapor: current understanding and unanswered questions, In Materials Science Forum. 461 (2004) 765-774.
DOI: 10.4028/www.scientific.net/msf.461-464.765
Google Scholar
[4]
G.Y. Lai, High-Temperature Corrosion and Materials Applications, ASM International, (2007).
Google Scholar
[5]
A.B. Kanthal, Handbook–Heating Alloys for Electric Household Appliances. Box 502, SE-73427 Hallstahammar, Sweden, (2001).
Google Scholar
[6]
Z.G. Zhang, F. Gesmundo, P.Y. Hou, Y. Niu, Criteria for the formation of protective Al2O3 scales on Fe–Al and Fe–Cr–Al alloys, Corrosion Science. 48(3) (2006) 741-765.
DOI: 10.1016/j.corsci.2005.01.012
Google Scholar
[7]
M.H. Heinonen, K. Kokko, M.P.J. Punkkinen, E. Nurmi, J. Kollár, L. Vitos, Initial oxidation of Fe–Al and Fe–Cr–Al alloys: Cr as an alumina booster, Oxidation of Metals. 76(3-4) (2011) 331.
DOI: 10.1007/s11085-011-9258-2
Google Scholar
[8]
K.G. Field, M.A. Snead, Y. Yamamoto, K.A. Terrani, Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications, Nuclear Technology Research and Development, (2017).
DOI: 10.2172/1400207
Google Scholar
[9]
E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo, L. Vitos, High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: The role of Cr as a chemically active element, Corrosion Science. 52(10) (2010) 3394-3404.
DOI: 10.1016/j.corsci.2010.06.019
Google Scholar
[10]
G.H. Awan, F. Ul Hasan, The morphology of coating/substrate interface in hot-dip-aluminized steels, Materials Science and Engineering: A. 472(1-2) (2008) 157-165.
DOI: 10.1016/j.msea.2007.03.013
Google Scholar
[11]
C.J. Wang, S.M. Chen, The high-temperature oxidation behavior of hot-dipping Al–Si coating on low carbon steel, Surface and Coatings Technology. 200(22-23) (2006) 6601-6605.
DOI: 10.1016/j.surfcoat.2005.11.031
Google Scholar
[12]
V.G. Shmorgun, A.I. Bogdanov, O.V. Slautin, V.P. Kulevich, Aluminizing of the Cr15Al5 alloy surface by hot-dipping in the melt, IOP Conference Series: Materials Science and Engineering. 537(2) (2019) 022069.
DOI: 10.1088/1757-899x/537/2/022069
Google Scholar
[13]
Russian State Standard 12766.1-90, Wire of High Electric Resistance Precision Alloys. Specifications, Standartinform, Moscow, (1996).
Google Scholar
[14]
J. Engkvist, U. Bexell, M. Grehk, M. Olsson, High temperature oxidation of FeCrAl‐alloys–influence of Al‐concentration on oxide layer characteristics, Materials and Corrosion. 60(11) (2009) 876-881.
DOI: 10.1002/maco.200805186
Google Scholar
[15]
R. Prescott, M.J. Graham, The oxidation of iron-aluminum alloys, Oxidation of Metals. 38(1-2) (1992) 73-87.
DOI: 10.1007/bf00665045
Google Scholar
[16]
V.G. Shmorgun, O.V. Slautin, D.V. Pronichev, V.P. Kulevich, Study of high-temperature heating effect on transformation of structure and phase composition of coatings of Al-Fe system, IOP Conference Series: Earth and Environmental Science. 87(9) (2017) 092025.
DOI: 10.1088/1755-1315/87/9/092025
Google Scholar
[17]
V.G. Shmorgun, A.I. Bogdanov, V.P. Kulevich, V.O. Kharlamov, The influence of the chemical composition of the Fe-Cr-Al system coatings on the oxide films phase composition, IOP Conference Series: Materials Science and Engineering. 862(2) (2020) 022059.
DOI: 10.1088/1757-899x/862/2/022059
Google Scholar
[18]
S. Yoneda, S. Hayashi, I. Saeki, S. Ukai, The Effect of Cr on the Lifetime of Al-Rich Amorphous Oxide Layer Formed on Fe–Cr–Al Alloys at 650° C, Oxidation of Metals. 88(5-6) (2017) 669-686.
DOI: 10.1007/s11085-017-9761-1
Google Scholar
[19]
S. Yoneda, S. Hayashi, S. Ukai, The transition from transient oxide to protective Al 2 O 3 scale on Fe–Cr–Al alloys during heating to 1000° C, Oxidation of Metals. 89(1-2) (2018) 81-97.
DOI: 10.1007/s11085-017-9778-5
Google Scholar
[20]
W.J. Cheng, C.J. Wang, Effect of chromium on the formation of intermetallic phases in hot-dipped aluminide Cr–Mo steels, Applied Surface Science. 277 (2013) 139-145.
DOI: 10.1016/j.apsusc.2013.04.015
Google Scholar