Structure and Phase Composition of the Al-Ti System Composites after Heat Treatment

Article Preview

Abstract:

The studies results of the titanium with aluminum diffusion interaction at a temperature of 650 oC are presented. The phase and chemical composition of the diffusion interaction zone, the nature of the change in its thickness from the exposure time are determined. It is shown that accelerated cooling of explosion-welded composites from the heat treatment temperature leads to spontaneous separation of the aluminum layer with the formation of a coating based on the TiAl3 intermetallic compound on the titanium surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

519-524

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Pöttgen, D. Johrendt, Intermetallics: Synthesis, Structure, Function, Walter de Gruyter GmbH Berlin, Boston, (2014).

Google Scholar

[2] S.E. Hoosain, S. Pityana, C.S. Freemantle, M. Tlotleng, Heat treatment of In situ laser-fabricated titanium aluminide, Metals. 8(9) (2018) 655.

DOI: 10.3390/met8090655

Google Scholar

[3] I.N. Maliutina, H. Si-Mohand, J. Sijobert, P. Bertrand, D.V. Lazurenko, I.A. Bataev, Structure and oxidation behavior of γ-TiAl coating produced by laser cladding on titanium alloy, Surface and Coatings Technology. 319 (2017) 136-144.

DOI: 10.1016/j.surfcoat.2017.04.008

Google Scholar

[4] J. Dai, J. Zhu, L. Zhuang, S. Li, Effect of surface aluminizing on long-term high-temperature thermal stability of TC4 titanium alloy, Surface Review and Letters. 23(02) (2016) 1550102.

DOI: 10.1142/s0218625x15501024

Google Scholar

[5] T. Sasaki, T. Yagi, T. Watanabe, A. Yanagisawa, Aluminizing of TiAl-based alloy using thermal spray coating, Surface and Coatings Technology. 205(13-14) (2011) 3900-3904.

DOI: 10.1016/j.surfcoat.2011.02.025

Google Scholar

[6] V.E. Oliker, V.L. Sirovatka, E.F. Grechishkin, A.D. Kostenko, V.V. Lashneva, I.I. Maksyuta, V.M. Derkach, Tribological properties of detonation coatings based on titanium aluminides and aluminum titanate, Powder Metallurgy and Metal Ceramics. 44(11-12) (2005) 531-536.

DOI: 10.1007/s11106-006-0021-1

Google Scholar

[7] A. Suzuki, S. Miyake, W. Naruse, N. Takata, M. Kobashi, Synthesis of porous Al/Al3Ti composite with hierarchical openecell structure for combining with phase change material, Journal of Alloys and Compounds. 770 (2019) 1100-1111.

DOI: 10.1016/j.jallcom.2018.08.211

Google Scholar

[8] A. Yumoto, F. Hiroki, I. Shiota, N. Niwa, In situ synthesis of titanium-aluminides in coating with supersonic free-jet PVD using Ti and Al nanoparticles, Surface and Coatings Technology. 169 (2003) 499-503.

DOI: 10.1016/s0257-8972(03)00152-x

Google Scholar

[9] S.A. Pyachin, A.A. Burkov, V.S. Komarova, Formation and study of electrospark coatings based on titanium aluminides, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 7(3) (2013) 515-522.

DOI: 10.1134/s1027451013030336

Google Scholar

[10] C. Parlikar, M.Z. Alam, R. Sarkar, D.K. Das, Effect of oxidation resistant Al3Ti coating on tensile properties of a near α-Ti alloy, Surface and Coatings Technology. 236 (2013) 107-117.

DOI: 10.1016/j.surfcoat.2013.09.036

Google Scholar

[11] H.K. Zarchi, M. Soltanieh, M.R. Aboutalebi, X. Guo, Thermodynamic study on pack aluminizing systems of pure titanium and nickel, Transactions of Nonferrous Metals Society of China. 23(6) (2013) 1838-1846.

DOI: 10.1016/s1003-6326(13)62668-0

Google Scholar

[12] N. Mizuta, K. Matsuura, S. Kirihara, Y. Miyamoto, Titanium aluminide coating on titanium surface using three-dimensional microwelder, Materials Science and Engineering: A. 492(1-2) (2008) 199-204.

DOI: 10.1016/j.msea.2008.03.028

Google Scholar

[13] C.J.Hu, P.H. Chiu, Wear and corrosion resistance of pure titanium subjected to aluminization and coated with a microarc oxidation ceramic coating, International journal of electrochemical science. 10 (2015) 4290-4302.

Google Scholar

[14] W. Deqing, S. Ziyuan, T. Yingli, Microstructure and oxidation of hot-dip aluminized titanium at high temperature, Applied Surface Science. 250(1-4) (2005) 238-246.

DOI: 10.1016/j.apsusc.2005.01.002

Google Scholar

[15] V.G. Shmorgun, Y.P. Trykov, O.V. Slautin, V.V. Metelkin, A.I. Bogdanov, The kinetics of diffusion processes in the nickel-aluminum composition, Russian Journal of Non-Ferrous Metals. 50(3) (2009) 286-289.

DOI: 10.3103/s1067821209030195

Google Scholar

[16] V.G. Shmorgun, L.D. Iskhakova, A.I. Bogdanov, A.O. Taube, R.P. Ermakov, The study of the chemical and phase composition of the diffusion interaction zone in layered composite Cr20Ni80-AD1, IOP Conference Series: Materials Science and Engineering. 177(5) (2017) 012134.

DOI: 10.1088/1757-899x/177/1/012134

Google Scholar

[17] V.G. Shmorgun, A.I. Bogdanov, A.O. Taube, Effect of the high-heating on the chemical and phase composition of the Al-Ni-Cr layered coatings, In Materials Science Forum. 870 (2016) 169-174.

DOI: 10.4028/www.scientific.net/msf.870.169

Google Scholar

[18] Y.P. Trykov, L.M. Gurevich, D.N. Gurulev, Diffusion processes in heating a Ti‐Al composite produced by explosion welding, Welding international. 15(5) (2001) 399-401.

DOI: 10.1080/09507110109549377

Google Scholar

[19] L.M. Gurevich, Y.P. Trykov, O.S. Kiselev, Formation of structural and mechanical inhomogeneities in explosion welding of aluminium to titanium, Welding International. 28(2) (2014) 128-132.

DOI: 10.1080/09507116.2013.796663

Google Scholar

[20] J.C. Schuster, M. Palm, Reassessment of the binary aluminum-titanium phase diagram, Journal of Phase Equilibria and Diffusion. 27(3) (2006) 255-277.

DOI: 10.1361/154770306x109809

Google Scholar

[21] V.G. Shmorgun, A.I. Bogdanov, M.D. Trunov, A.O. Taube, Investigation on thermal stress-strain state in multilayered composites during nickel aluminide coatings formation, WSEAS Trans. Appl. Theoret. Mech. 10 (2015) 180-186.

Google Scholar