Experimental Study of Tensile Preloading Influence on the Mechanical Behaviour of Pseudo-Ductile Hybrid Composite under High-Velocity Impact

Article Preview

Abstract:

The hybridisation of fibre-reinforced plastics is one of the perspective technological methods that make it possible to reduce the sensitivity of polymer composites to stress concentration and increase their damage tolerance. In this case, hybridisation means a combination of different types of reinforcing fibres in one yarn, one layer or one package. In most published papers, the authors investigated the mechanical behaviour of hybrid fibre-reinforced plastic under static loading or low-velocity impact conditions only. At the same time, statically preloaded structures made of composite materials can also be subjected to high-velocity impact. Tensile or compressive preloading affects not only the amount of energy absorbed by the composite but also changes the deformation and fracture pattern. This paper presents the results of the experimental study of the mechanical behaviour of a woven carbon/aramid hybrid composite under tensile preloading and high-velocity impact. Pre-tensioned specimens of homogeneous and hybrid composites were subjected to a high-velocity impact by a steel spherical projectile with the velocities up to 900 m/s. The experimental results showed that the hybrid composite had the lowest sensitivity of the ballistic limit to the tensile preloading.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

642-648

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Diao, A. Bismarck, P. Robinson, M.R. Wisnom, Pseudo-ductile behaviour of unidirectional fibre reinforced polyamide-12 composite by intra-tow hybridization and damage suppression in thin ply CFRP angle-ply laminates, Composites Part A. 69 (2014) 64-71.

DOI: 10.1016/j.compositesa.2014.11.004

Google Scholar

[2] M. Fotouhi, M. Jalalvand, M.R. Wisnom, Notch insensitive orientation-dispersed pseudo-ductile thin-ply carbon/glass hybrid composites, Composites Part A. 110 (2018) 29-44.

DOI: 10.1016/j.compositesa.2018.04.012

Google Scholar

[3] G. Czél, T. Rev, M. Jalalvand, et al., Pseudo-ductility and reduced notch sensitivity in multi-directional all-carbon/epoxy thin-ply hybrid composites, Composites Part A. 104 (2018) 151-164.

DOI: 10.1016/j.compositesa.2017.10.028

Google Scholar

[4] Y. Swolfs, I. Verpoest, L. Gorbatikh, Recent advances in fibre-hybrid composites: material selection, opportunities and application, Int. Mater. Rev. 64 (2018) 181-215.

DOI: 10.1080/09506608.2018.1467365

Google Scholar

[5] J.D. Fuller, M.R. Wisnom, Exploration of the potential for pseudo-ductility in thin ply CFRP angle-ply laminates via an analytical method, Compos. Sci. Technol. 112 (2015) 8-15.

DOI: 10.1016/j.compscitech.2015.02.019

Google Scholar

[6] G. Czél, M.R. Wisnom. Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg, Composites Part A. 52 (2013) 23-30.

DOI: 10.1016/j.compositesa.2013.04.006

Google Scholar

[7] M. Jalalvand, G. Czél, M.R. Wisnom, Damage analysis of pseudo-ductile thin-ply UD hybrid composites – a new analytical method, Composites Part A. 69 (2015) 83-93.

DOI: 10.1016/j.compositesa.2014.11.006

Google Scholar

[8] C. Zhang, Y. Rao, W. Li, Low-velocity impact behaviour of intralayer hybrid composites based on carbon and glass non-crimp fabric, Compos. Struct. 234 (2020) 111713.

DOI: 10.1016/j.compstruct.2019.111713

Google Scholar

[9] E. Sevkat, B. Liaw, F. Delale, Drop-weight impact response of hybrid composites by impactor of various geometries, Mater. and Des. 52 (2013) 67-77.

DOI: 10.1016/j.matdes.2013.05.016

Google Scholar

[10] Z. Wu, L. Zhang, Z. Ying, J. Ke, X. Hu, Low-velocity impact performance of hybrid 3D carbon/glass woven orthogonal composite: Experiment and simulation, Composites Part B. 196 (2020) 108098.

DOI: 10.1016/j.compositesb.2020.108098

Google Scholar

[11] A. Sasikumar, D. Trias, J. Costa, N. Blanco, J. Orr, P. Linde, Effect of ply thickness and ply level hybridization on the compression after impact strength of thin laminates, Composites Part A. 121 (2019) 232-243.

DOI: 10.1016/j.compositesa.2019.03.022

Google Scholar

[12] E.V. González, P. Maimí, J.R. Sainz de Aja, P. Cruz, P.P. Comanho, Effects of interply hybridization on the damage resistance and tolerance of composite laminates, Compos. Struct. 108 (2014) 319-331.

DOI: 10.1016/j.compstruct.2013.09.037

Google Scholar

[13] M.T. Dehkordi, H. Nosraty, M. Shokrieh, G. Minak, D. Ghelli, The influence of hybridization on impact damage behavior and residual compression strength of intraply basalt/nylon hybrid composites, Mater. and Des. 43 (2013) 283-290.

DOI: 10.1016/j.matdes.2012.07.005

Google Scholar

[14] F. Sarasini, J. Tirillò, M. Valente, et al., Hybrid composites based on aramid and basalt woven fabrics: Impact damage modes and residual flexural properties, Mater. and Des. 49 (2013) 290-302.

DOI: 10.1016/j.matdes.2013.01.010

Google Scholar

[15] A. Wagih, T.A. Sebaey, A. Yudhanto, G. Lubineau, Post-impact flexural behavior of carbon-aramid/epoxy hybrid composites, Compos. Struct. 239 (2020) 112022.

DOI: 10.1016/j.compstruct.2020.112022

Google Scholar

[16] Y. Swolfs, L. Gorbatikh, I. Verpoest, Fibre hybridisation in polymer composites: a review, Composites Part A. 67 (2014) 181-200.

DOI: 10.1016/j.compositesa.2014.08.027

Google Scholar

[17] B. Whittingham, I. Marshall, T. Mitrevski, R. Jones, The response of composite structures with pre-stress subject to low velocity impact damage, Compos. Struct. 66 (2004) 685-698.

DOI: 10.1016/j.compstruct.2004.06.015

Google Scholar

[18] T. Mitrevski, I. Marshall, R. Thomson, R. Jones, Low-velocity impacts on preloaded GFRP specimens with various impact shapes, Compos. Struct. 76 (2006) 209-217.

DOI: 10.1016/j.compstruct.2006.06.033

Google Scholar

[19] I-H. Choi, I-G. Kim, S-M. Ahn, C-H. Yeom, Analytical and experimental studies on the low-velocity impact response and damage of composite laminates under in-plane loads with structural damping effects, Compos, Sci. Technol. 79 (2010) 1513-1522.

DOI: 10.1016/j.compscitech.2010.05.007

Google Scholar

[20] H. Saghafi, G. Minak, A. Zucchelli, Effect of preload on the impact response of curved composite panels, Composite Part B. 60 (2014) 74-81.

DOI: 10.1016/j.compositesb.2013.12.026

Google Scholar

[21] S-T. Chiu, Y-Y. Liou, Y-C. Chang, C-L. Ong, Low-velocity impact behavior of prestressed composite laminates, Mater. Chem. Phys. 47 (1997) 268-272.

DOI: 10.1016/s0254-0584(97)80063-6

Google Scholar

[22] S.K. Garcia-Castillo, S. Sanchez-Saez, E. Barbero, C. Navarro, Response of preloaded laminate composite plates subject to high velocity impact, J. Phys. IV. 134 (2006) 1257-1263.

DOI: 10.1051/jp4:2006134191

Google Scholar

[23] S. Heimbs, T. Bergmann, High-velocity impact behaviour of presressed composite plates under bird strike loading, Int. J. Aerospace. Eng. (2012) 372167.

DOI: 10.1155/2012/372167

Google Scholar

[24] S. Heimbs, T. Bergmann, D. Schueler, N. Toso-Pentecote, High velocity impact on preloaded composite plates, Compos. Struct. 111 (2014) 158-168.

DOI: 10.1016/j.compstruct.2013.12.031

Google Scholar

[25] A.R. Moallemzadeh, S.A.R. Sabet, H. Abedini, Preloaded composite panels under high velocity impact, Int. J. Impact. Eng. 114 (2018) 153-159.

DOI: 10.1016/j.ijimpeng.2017.12.019

Google Scholar

[26] M.V. Zhikharev, S.B. Sapozhnikov, O.A. Kudryavtsev, V.M. Zhikharev, Effect of tensile preloading on the ballistic properties of GFRP, Composites Part B. 169 (2019) 524-531.

DOI: 10.1016/j.compositesb.2019.03.026

Google Scholar

[27] Information on http://www.hccomposite.com.

Google Scholar

[28] Information on https://npp-termoteks.inni.info.

Google Scholar

[29] E.V. Leshkov, S.B. Sapozhnikov, Modeling the nonlinear deformation and damage of carbon-aramid fabric composites in tension, Mech. Compos. Mat. 56 (2020) 867-880.

DOI: 10.1007/s11029-020-09906-1

Google Scholar

[30] W. Xie, W. Zhang, N. Kuang, D. Li, W. Huang, Y. Gao, N. Ye, L. Guo, P. Ren, Experimental investigation of normal and oblique impacts on CFRPs be high velocity steel sphere, Composites Part B. 99 (2016) 292-300.

DOI: 10.1016/j.compositesb.2016.06.020

Google Scholar

[31] J. Pernas-Sánchez, J.A. Artero-Guerrero, D. Varas, J. López-Puente, Experimental analysis of normal and oblique high velocity impacts on carbon/epoxy tape laminates, Composites Part A. 60 (2014) 24-31.

DOI: 10.1016/j.compositesa.2014.01.006

Google Scholar