Experimental and Computational Study of Ultra-Low-Cycle Fatigue of Fabric-Reinforced GFRP

Article Preview

Abstract:

The development of weight-efficient reusable launch systems has increased the urgency of problems associated with ultra-low-cycle fatigue. In this paper, one-sided three-point bending cyclic tests of GFRP specimens were performed. Parallel to the cyclic tests, registration of acoustic emission signals has been performed to identify the main damage mechanisms underlying ultra-low-cycle fatigue of fabric-reinforced composites. The obtained displacement-time diagrams showed a noticeable effect of creep on the deformation process. It was found that fiber fracture is the main mechanism of microdamage accumulation. A phenomenological three-element model based on the Norton-Bailey law and the Masing structural model was proposed. The model allowed describing both the deformation process of the specimens in time and their durability at different load levels. An optimization algorithm based on the deformable polyhedron method was used to find the optimal set of the model parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

649-655

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Nicholas, High Cycle Fatigue. A Mechanics of Materials Perspective, Elsevier, (2006).

Google Scholar

[2] J.C.R Pereira, A.M.P. de Jesus, J. Xavier, A.A. Fernandes, Ultra low-cycle fatigue behaviour of a structural steel, Engineering Structures. 60 (2014) 214-222.

DOI: 10.1016/j.engstruct.2013.12.039

Google Scholar

[3] G. Caprino, G. Giorleo, Fatigue lifetime of glass fabric/epoxy composites, Compos. Part A. 30(3) 1999 299-304.

DOI: 10.1016/s1359-835x(98)00124-9

Google Scholar

[4] W. Hwang, K.S. Han, Fatigue of composites – fatigue modulus concept and life prediction, J Compos Mater. 20(2) (1986) 154-165.

DOI: 10.1177/002199838602000203

Google Scholar

[5] M.G.R. Sause, In Situ Monitoring of Fiber-Reinforced Composites. Theory, Basic Concepts, Methods, and Applications, Springer International Publishing, (2016).

Google Scholar

[6] J.C.R. Pereira, A.M.P. de Jesus, J. Xavier, J.A.F.O. Correia, L. Susmel, A.A. Fernandes, Low and ultra-low-cycle fatigue behavior of X52 piping steel based on theory of critical distances, International Journal of Fatigue. 134 (2020) 105482.

DOI: 10.1016/j.ijfatigue.2020.105482

Google Scholar

[7] R.M. Guedes (Eds.), Creep and Fatigue in Polymer Matrix Composites, 2nd ed., Elsevier Ltd, (2019).

Google Scholar

[8] I. De Baere, W. Van Paepegem, J. Degrieck, On the feasibility of a three-point bending setup for the validation of (fatigue) damage models for thin composite laminates, Polymer Composites. 29(10) (2008) 1067-1076.

DOI: 10.1002/pc.20465

Google Scholar

[9] V. Carvelli, J. Pazmiño, S. Lomov, A. Bogdanovich, D. D. Mungalov, I. Verpoest, Quasistatic and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite, J. Compos. Mater. 47 (2013) 3195-3209.

DOI: 10.1177/0021998312463407

Google Scholar

[10] G. Romhány,T. Czigány, J. Karger-Kocsis, Failure assessment and evaluation of damage development and crack growth in polymer composites via localization of acoustic emission events: a review, Polym. Rev. 57(3) (2017) 397-439.

DOI: 10.1080/15583724.2017.1309663

Google Scholar

[11] S.V. Lomov, M Karahan, A.E. Bogdanovich, I. Verpoest, Monitoring of acoustic emission damage during tensile loading of 3D woven carbon/epoxy composites, Textile Research Journal. 84(13) (2014) 1373-1384.

DOI: 10.1177/0040517513519510

Google Scholar

[12] W. Zhou, W. Zhao, Y. Zhang, Z. Ding, Cluster analysis of acoustic emission signals and deformation measurement for delaminated glass fiber epoxy composites, Compos. Struct. 195 (2018) 349-358.

DOI: 10.1016/j.compstruct.2018.04.081

Google Scholar

[13] W. Zhou, P.F. Zhang, H.F. Yin, Y.J. Shang, Flexural damage behavior of carbon fiber three-dimensional braided composites using acoustic emission and micro-CT, Mater. Res. Express. 6 (2019) 115601.

DOI: 10.1088/2053-1591/ab43f1

Google Scholar

[14] L. Xu, K. Wang, X. Yang, Y. Su, J. Yang, Y. Liao, Z. Su, Model-driven fatigue crack characterization and growth prediction: a two-step, 3-D fatigue damage modeling framework for structural health monitoring, International Journal of Mechanical Sciences. 195 (2021) 106226.

DOI: 10.1016/j.ijmecsci.2020.106226

Google Scholar

[15] J. Llobet, P. Maimí, A. Turon, B.L.V. Bak, E. Lindgaard, L. Carreras, F. Martin de la Escalera, A continuum damage model for composite laminates: Part IV- experimental and numerical tests, Mechanics of Materials. 154 (2021) 103686.

DOI: 10.1016/j.mechmat.2020.103686

Google Scholar

[16] L. Wu, F. Zhang, B. Sun, B. Gu, Finite element analyses on three-point low-cyclic bending fatigue of 3-D braided composite materials at microstructure level, International Journal of Mechanical Sciences. 84 (2014) 41-53.

DOI: 10.1016/j.ijmecsci.2014.03.036

Google Scholar

[17] Information on http://www.electroizolit.ru/.

Google Scholar

[18] M. Bourchak, I.R. Farrow, I.P. Bond, C.W. Rowland, F. Menan, Acoustic emission energy as a fatigue damage parameter for CFRP composites, Int. J. Fatigue. 29 (2007) 457-470.

DOI: 10.1016/j.ijfatigue.2006.05.009

Google Scholar

[19] G. Masing, Zur Heynschen Theorie der Verfestigung der Metalle durch verborgen elastische Spannungen, in: C.D. Harries (Eds.), Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern, Springer-Verlag Berlin Heidelberg, 1923, pp.231-239.

DOI: 10.1007/978-3-642-99663-4_17

Google Scholar

[20] H.E. Daniels, The statistical theory of the strength of bundles of threads, Proceedings of the Royal Society A. Math. Phys. Eng. Sci. 183 (1945) 405-435.

Google Scholar

[21] J.A. Nelder, R. Mead, A simplex method for function minimization, Computer Journal. 7(4) (1965) 308-313.

DOI: 10.1093/comjnl/7.4.308

Google Scholar