[1]
T. Nicholas, High Cycle Fatigue. A Mechanics of Materials Perspective, Elsevier, (2006).
Google Scholar
[2]
J.C.R Pereira, A.M.P. de Jesus, J. Xavier, A.A. Fernandes, Ultra low-cycle fatigue behaviour of a structural steel, Engineering Structures. 60 (2014) 214-222.
DOI: 10.1016/j.engstruct.2013.12.039
Google Scholar
[3]
G. Caprino, G. Giorleo, Fatigue lifetime of glass fabric/epoxy composites, Compos. Part A. 30(3) 1999 299-304.
DOI: 10.1016/s1359-835x(98)00124-9
Google Scholar
[4]
W. Hwang, K.S. Han, Fatigue of composites – fatigue modulus concept and life prediction, J Compos Mater. 20(2) (1986) 154-165.
DOI: 10.1177/002199838602000203
Google Scholar
[5]
M.G.R. Sause, In Situ Monitoring of Fiber-Reinforced Composites. Theory, Basic Concepts, Methods, and Applications, Springer International Publishing, (2016).
Google Scholar
[6]
J.C.R. Pereira, A.M.P. de Jesus, J. Xavier, J.A.F.O. Correia, L. Susmel, A.A. Fernandes, Low and ultra-low-cycle fatigue behavior of X52 piping steel based on theory of critical distances, International Journal of Fatigue. 134 (2020) 105482.
DOI: 10.1016/j.ijfatigue.2020.105482
Google Scholar
[7]
R.M. Guedes (Eds.), Creep and Fatigue in Polymer Matrix Composites, 2nd ed., Elsevier Ltd, (2019).
Google Scholar
[8]
I. De Baere, W. Van Paepegem, J. Degrieck, On the feasibility of a three-point bending setup for the validation of (fatigue) damage models for thin composite laminates, Polymer Composites. 29(10) (2008) 1067-1076.
DOI: 10.1002/pc.20465
Google Scholar
[9]
V. Carvelli, J. Pazmiño, S. Lomov, A. Bogdanovich, D. D. Mungalov, I. Verpoest, Quasistatic and fatigue tensile behavior of a 3D rotary braided carbon/epoxy composite, J. Compos. Mater. 47 (2013) 3195-3209.
DOI: 10.1177/0021998312463407
Google Scholar
[10]
G. Romhány,T. Czigány, J. Karger-Kocsis, Failure assessment and evaluation of damage development and crack growth in polymer composites via localization of acoustic emission events: a review, Polym. Rev. 57(3) (2017) 397-439.
DOI: 10.1080/15583724.2017.1309663
Google Scholar
[11]
S.V. Lomov, M Karahan, A.E. Bogdanovich, I. Verpoest, Monitoring of acoustic emission damage during tensile loading of 3D woven carbon/epoxy composites, Textile Research Journal. 84(13) (2014) 1373-1384.
DOI: 10.1177/0040517513519510
Google Scholar
[12]
W. Zhou, W. Zhao, Y. Zhang, Z. Ding, Cluster analysis of acoustic emission signals and deformation measurement for delaminated glass fiber epoxy composites, Compos. Struct. 195 (2018) 349-358.
DOI: 10.1016/j.compstruct.2018.04.081
Google Scholar
[13]
W. Zhou, P.F. Zhang, H.F. Yin, Y.J. Shang, Flexural damage behavior of carbon fiber three-dimensional braided composites using acoustic emission and micro-CT, Mater. Res. Express. 6 (2019) 115601.
DOI: 10.1088/2053-1591/ab43f1
Google Scholar
[14]
L. Xu, K. Wang, X. Yang, Y. Su, J. Yang, Y. Liao, Z. Su, Model-driven fatigue crack characterization and growth prediction: a two-step, 3-D fatigue damage modeling framework for structural health monitoring, International Journal of Mechanical Sciences. 195 (2021) 106226.
DOI: 10.1016/j.ijmecsci.2020.106226
Google Scholar
[15]
J. Llobet, P. Maimí, A. Turon, B.L.V. Bak, E. Lindgaard, L. Carreras, F. Martin de la Escalera, A continuum damage model for composite laminates: Part IV- experimental and numerical tests, Mechanics of Materials. 154 (2021) 103686.
DOI: 10.1016/j.mechmat.2020.103686
Google Scholar
[16]
L. Wu, F. Zhang, B. Sun, B. Gu, Finite element analyses on three-point low-cyclic bending fatigue of 3-D braided composite materials at microstructure level, International Journal of Mechanical Sciences. 84 (2014) 41-53.
DOI: 10.1016/j.ijmecsci.2014.03.036
Google Scholar
[17]
Information on http://www.electroizolit.ru/.
Google Scholar
[18]
M. Bourchak, I.R. Farrow, I.P. Bond, C.W. Rowland, F. Menan, Acoustic emission energy as a fatigue damage parameter for CFRP composites, Int. J. Fatigue. 29 (2007) 457-470.
DOI: 10.1016/j.ijfatigue.2006.05.009
Google Scholar
[19]
G. Masing, Zur Heynschen Theorie der Verfestigung der Metalle durch verborgen elastische Spannungen, in: C.D. Harries (Eds.), Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern, Springer-Verlag Berlin Heidelberg, 1923, pp.231-239.
DOI: 10.1007/978-3-642-99663-4_17
Google Scholar
[20]
H.E. Daniels, The statistical theory of the strength of bundles of threads, Proceedings of the Royal Society A. Math. Phys. Eng. Sci. 183 (1945) 405-435.
Google Scholar
[21]
J.A. Nelder, R. Mead, A simplex method for function minimization, Computer Journal. 7(4) (1965) 308-313.
DOI: 10.1093/comjnl/7.4.308
Google Scholar