[1]
A.D. Shlyapin, D.A. Nechaev, A.Yu. Omarov, N.V. Ivanov, T.Yu. Skakova, Studying the properties of aluminum hydroxide powder obtained by chemical dispersion from waste alloy B95, Bulletin of the Bryansk State Technical University. 12 (2019) 58-61.
DOI: 10.30987/1999-8775-2019-2019-12-58-61
Google Scholar
[2]
Yu.G. Trifonov, A.D. Shlyapin, A.Yu. Omarov, The structure and phase composition of a new ceramic material, New Refractories. 12 (2012) 31-35.
DOI: 10.1007/s11148-013-9533-7
Google Scholar
[3]
D.A. Ivanov, A.Yu. Omarov, A.D. Shlyapin, Development of the technology for the disposal of the waste product of the working cycle of mobile hydrogen generators, Mechanical Engineering and Engineering Education. 1 (2010) 31-36.
Google Scholar
[4]
A.D. Shlyapin V.P., Tarasovsky, A.Yu. Omarov, V.S. Nikolsky, I.A. Kurbatova, Study of the structure and phase composition of alumina powders obtained by chemical dispersion of an aluminum alloy with different magnesium content, Glass and Ceramics. 12 (2013) 37-41.
DOI: 10.1007/s10717-014-9597-y
Google Scholar
[5]
A.D. Shlyapin, D.A. Ivanov, A.Yu. Omarov, Properties of aluminum hydroxide obtained in the production of hydrogen, Mechanical Engineering and Engineering Education. 2 (2011) 48-51.
Google Scholar
[6]
M.Ya. Gen, I.V. Plate, N.I. Stoenko and other, Levitation-jet method of condensation synthesis of ultradispersed powders of alloys and metal oxides and features of their structure, in: Physicochemistry of Ultradispersed Systems, Nauka, Moscow, pp.151-157.
Google Scholar
[7]
M.A. Petrova, G.A. Mikirticheva, A.S. Novikova, V.F. Popova, Spinel solid solutions in the systems MgAl2O4–ZnAl2O4 and MgAl2O4–Mg2TiO4, J. Mater. Soc. 12(10) (1997) 1-5.
Google Scholar
[8]
R. Orru, R. Licheri, A. M. Locci, A. Cincotti, G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Materials Science and Engineering. 63 (2009) 127-287.
DOI: 10.1016/j.mser.2008.09.003
Google Scholar
[9]
J. Wang, S.Y. Lim, S.C. Ng, C.H. Chew, L.M. Gan, Dramatic effect of small amount of MgO addition on the sintering of Al2O3 – 5 vol. SiC nanocomposite, Materials Letters. 33 (1998) 273-277.
DOI: 10.1016/s0167-577x(97)00121-3
Google Scholar
[10]
C.C. Anya, S.G. Roberts, Pressureless sintering and elastic constants of A12O3 – SiC nanocomposites, Journal of the European Ceramic Society. 17 (1997) 565-573.
DOI: 10.1016/s0955-2219(96)00092-1
Google Scholar
[11]
Y.–K. Jeong, K. Niihara, Microstructure and properties of alumina–silicon carbide nanocomposites fabricated by pressureless sintered and post hot–isostatic pressing, Trans. Nonferrous Met. Soc. China. 21 (2011) 1-6.
DOI: 10.1016/s1003-6326(11)61050-9
Google Scholar
[12]
S. Zhijian, M. Johnsson, Z. Zhao, M. Nygren, Spark plasma sintering of alumina, J. Am. Ceram. Soc. 85 (2002) 1921-1927.
DOI: 10.1111/j.1151-2916.2002.tb00381.x
Google Scholar
[13]
K. Shirasuka, G. Yamaguchi, Precise measurement of the crystal data and the solid solution range of the defective spinel MgO–n–Al2O3, J. Amer. Ceram. Jap. 82(12) (1974) 34-37.
DOI: 10.2109/jcersj1950.82.952_650
Google Scholar
[14]
N.T. Andrianov, P.P. Faykov, S.R. Abdel Gawad, E.M. Malkova, Synthesis and progress of powders in the MgO – Al2O3 system obtained by the sol-gel method, Advances in Chemistry and Chemical Technology. 8(56) (2005) 36-40.
Google Scholar
[15]
A. Yamaguchi, Consideration on improving corrosion–resistance of refractories, Taika–butsu Overseas. 13(4) (1993) 3-7.
Google Scholar