[1]
V. V. Silberschmidt, Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques, Elsevier, Amsterdam, (2020).
Google Scholar
[2]
C. Suryanarayana, Mechanical alloying and milling, Progress in Mat. Science. 46 (2001) 1-184.
Google Scholar
[3]
W.A. Kaczmarek, B.W. Ninham, Surfactant-assisted ball milling of BaFe12O19 ferrite dispersion, Mat. Chem and Phys. 40 (1995) 21-29.
DOI: 10.1016/0254-0584(94)01450-u
Google Scholar
[4]
S.V. Ketov, Yu.D. Yagodkin, V.P. Menushenkov, Structure and magnetic properties of strontium ferrite anisotropic powder with nanocrystalline structure, J. Alloys and Compd. 510 (2011) 1065-1068.
DOI: 10.1016/j.jallcom.2010.09.184
Google Scholar
[5]
A. Goldman, Modern Ferrite Technology, second ed., Springer, Pittsburg, (2006).
Google Scholar
[6]
L.M. Letyuk, V.G. Kostyushin, A.V. Gonchar, Technology of Ferrite Materials in Magnetoelectronics, MISIS, Moscow, (2005).
Google Scholar
[7]
O.D. Neikov, S.S. Nabochenko, N.A. Yefimov, Handbook of Non-Ferrous Metal Powders, Elsevier, Amsterdam, (2019).
Google Scholar
[8]
D.F. Heaney, Handbook of Metal Injection Molding, second ed., Woodhead Publishing, Cambridge, (2019).
Google Scholar
[9]
P.W. Lee, Y. Trudel, R. Iacocca et al., Bulk properties of powders, in: P. Samal; J. Newkirk (Eds.), ASM Handbook, Volume 7, ASM International, 2015, pp.287-301.
Google Scholar
[10]
J.M. Matsen, J.R. Grace, Fluidization, Springer, Netherlands, (1980).
Google Scholar
[11]
J.M. Valverde, Fluidization of Fine Powders, Springer, Netherlands, (2013).
Google Scholar
[12]
Yu. M. Vernigorov, I.N. Egorov, S.I. Egorova, The application of a magnetovibrating layer to the milling of ferromagnetic materials, Euro PM2005 Proceedings. 1 (2005) 451-455.
Google Scholar
[13]
I.N. Egorov, S.I. Egorova, Effect of electromagnetic action on dispersed composition on milling ferromagnetic materials in a hammer mill, Rus. J. of Non-Ferr. Met. 55 (2014) 371-374.
DOI: 10.3103/s1067821214040063
Google Scholar
[14]
I.N. Egorov, N.Ya. Egorov, Technological processes intensification in devices with magneto-fluidized bed, MATEC Web of Conf. 132 (2017) 1-4.
DOI: 10.1051/matecconf/201713203001
Google Scholar
[15]
L. Meng, C. Zhang, Y. Ren, M. Luo, G. Tian, Study on the power consumption of different milling modes and number of inserts in face milling processes, 13th IEEE Conference on Automation Science and Engineering (CASE), Xi'an, China, 2017, pp.1475-1480.
DOI: 10.1109/coase.2017.8256312
Google Scholar
[16]
N. Diaz, E. Redelsheimer, D. Dornfeld, Energy consumption characterization and reduction strategies for milling machine tool use, in: J. Hesselbach, C. Herrmann (Eds), Glocalized Solutions for Sustainability in Manufacturing, Springer, Berlin, 2011, pp.263-267.
DOI: 10.1007/978-3-642-19692-8_46
Google Scholar
[17]
H.A. Rahman, M.H. Fauziah, M.N. Rizal et al., Investigation of energy consumption during milling operation, AIP Conference Proceedings. 2129 (2019) 020009.
Google Scholar
[18]
J. de Bakker, Energy use of fine grinding in mineral processing, Met. and Mat. Transactions E. 1 (2014) 8-19.
Google Scholar
[19]
V.G. Andreev, I.I. Kaneva, S.V. Podgornaya, Study of influence of strontium hexaferrite powders milling duration on microstructure and properties of magnets based on them, Mat. of El. Tech. 2 (2010) 43-47.
Google Scholar
[20]
I.N. Egorov, N.Ya.Egorov, Energy consumption during milling in beater mill in magnetofluidized bed, MNIJ. 50 (2016) 44-47.
Google Scholar
[21]
I.N. Egorov, S.I. Egorova, V.P. Kryzhanovsky, Particle size distribution and structural state analysis of mechanically milled strontium hexaferrite, Mat. Sci. Forum. 946 (2019) 293-297.
DOI: 10.4028/www.scientific.net/msf.946.293
Google Scholar
[22]
I.N. Egorov, N.Y. Egorov, V.P. Kryzhanovsky, Kinetics of structural changes in strontium hexa-ferrite powder during milling in beater mill, Materials Science Forum. 989 (2020) 199-203.
DOI: 10.4028/www.scientific.net/msf.989.199
Google Scholar