[1]
Yu. Yoshida, G. Langouche, Defects and Impurities in Silicon Materials: An Introduction to Atomic-Level Silicon Engineering, Springer Japan, Tokyo, (2015).
DOI: 10.1007/978-4-431-55800-2
Google Scholar
[2]
A. Medvid, Y. Hatanaka, V.G. Litovchenko, L. Fedorenko, D. Korbutjak, S. Krylyuk, Mechanism of generation of defects in a semiconductor by pulse laser radiation, Materials Science Forum. 384-385 (2002) 291-296.
DOI: 10.4028/www.scientific.net/msf.384-385.291
Google Scholar
[3]
C. Florian, S.V. Kirner, J. Kruger, J. Bonse, Surface functionalization by laser-induced periodic surface structures, J. Laser Appl. 32 (2020) 022063.
DOI: 10.2351/7.0000103
Google Scholar
[4]
A. Temmler, M. Kupper, M.A. Walochnik, A. Lanfermann, T. Schmickler, A. Bach, T. Greifenberg, O. Oreshkin, E. Willenborg, K. Wissenbach, R. Poprawe, Surface structuring by laser remelting of metals, J. Laser Appl. 29 (2017) 012015.
DOI: 10.2351/1.4972414
Google Scholar
[5]
Richard J.D. Tilley, Defects in Solids, John Wiley & Sons, New Jersey, (2008).
Google Scholar
[6]
J.D. Patterson, B.C. Bailey, Solid-State Physics: Introduction to the Theory, Springer, Berlin, (2018).
Google Scholar
[7]
D. Schneider, Laser-induced surface acoustic waves for material testing, in: N. Ida, N. Meyendorf (Eds), Handbook of Advanced Non-destructive Evaluation, Springer Nature Switzerland AG, Cham, 2019, pp.171-234.
DOI: 10.1007/978-3-319-26553-7_38
Google Scholar
[8]
A.M. Orlov, A.A. Solovyev, I.O. Yavtushenko, A.A. Skvortsov, Effect of an electric field on the dislocation structure of silicon upon indentation in water, Physics of the Solid State. 51 (2009) 50-54.
DOI: 10.1134/s1063783409010053
Google Scholar
[9]
H. Wang, X. Liu, Z.M. Zhang, Absorption coefficients of crystalline silicon at wavelengths from 500 nm to 1000 nm, Int J Thermophys. 34 (2013) 213-225.
DOI: 10.1007/s10765-013-1414-2
Google Scholar
[10]
W. Skorupa, D. Panknin, M. Voelskow et al., Advanced thermal processing of semiconductor materials by flash lamp annealing, MRS Proceedings. 810 (2004) 202-207.
DOI: 10.1557/proc-810-c4.16
Google Scholar
[11]
S. Hava, M. Auslender, Theoretical dependence of infrared absorption in bulk-doped silicon on carrier concentration, Appl. Opt. 32 (1993) 1122-1125.
DOI: 10.1364/ao.32.001122
Google Scholar
[12]
P. Fontaine, J. Marfaing, W. Marine, F. Salvan, B. Mutaftschiev, Instabilities of crystallization in amorphous germanium under pulsed laser irradiation, in: D. Bauerle (Eds), Laser Processing and Diagnostics, Springer Series in Chemical Physics, vol 39, Springer, Berlin, 1984, pp.19-24.
DOI: 10.1007/978-3-642-82381-7_3
Google Scholar
[13]
B. Audoin, H. Meri, C. Rossignol, 2D radiation of acoustic waves generated by an IR laser pulse in anisotropic semiconductors, J. Phys. IV France. 125 (2005) 327-330.
DOI: 10.1051/jp4:2005125077
Google Scholar
[14]
Z. Sun, M.C. Gupta, A study of laser-induced surface defects in silicon and impact on electrical properties, Journal of Applied Physics. 124 (2018) 223103.
DOI: 10.1063/1.5058143
Google Scholar
[15]
J.D. Aussel, A. Le Brun, J.C. Baboux, Generating acoustic waves by laser: theoretical and experimental study of the emission, Ultrasonics. 26 (5) (1988) 245-255.
DOI: 10.1016/0041-624x(88)90013-3
Google Scholar