Collection of Laser Ablation Products by Means of an Electrostatic Field

Article Preview

Abstract:

The work is devoted to the problem of controlled laser micromachining of materials surface layers. The problem of ablation products reverse deposition near the laser processing region is considered. Laser ablation products, in addition to direct interaction with laser radiation, significantly increase lifetime and temperature of laser-induced plasma torch, which leads to decrease in energy entering processing area, as a result of which not removal, but heating of coating material occurs. Ablated particles can be deposited on the processed samples surface, which causes distortions in recorded structure spatial geometry. The possibility of using an electrostatic filtration system is considered as a method for protecting treated surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

748-752

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, A.N. Zolotov, V.G. Prokoshev, Femtosecond laser-induced formation of low-dimensional thin-films elements, J. Phys. Conf. Ser. 1164 (2019) 012009.

DOI: 10.1088/1742-6596/1164/1/012009

Google Scholar

[2] R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, D.G. Vasilchenkova, V.G. Prokoshev, Formation of optical antennas interfaces by laser processing of thin metal coatings, J. Phys. Conf. Ser. 1331 (2019) 012011.

DOI: 10.1088/1742-6596/1331/1/012011

Google Scholar

[3] R.V. Chkalov, D.A. Kochuev, K.S. Khorkov, V.G. Prokoshev, Fabrication of bicomponent nanoantennas interfaces by femtosecond laser ablation method, EPJ Web of Conferences. 220 (2019) 03008.

DOI: 10.1051/epjconf/201922003008

Google Scholar

[4] R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, Femtosecond laser micromachining of metal thin films, Mater. Today: Proc. 11 (2019) 441-445.

DOI: 10.1016/j.matpr.2019.01.010

Google Scholar

[5] S.F. Toosi, S. Moradi, S.G. Hatzikiriakos, Fabrication of micro/nano patterns on polymeric substrates using laser ablation methods to control wettability behavior: a critical review, Rev. Adhes. Adhes. 5 (2017) 55-78.

DOI: 10.7569/raa.2017.097302

Google Scholar

[6] C. Chen, G. Chen, H. Yang, G. Zhang, D. Hu, H. Chen, T. Guo, Solution-processed metal oxide arrays using femtosecond laser ablation and annealing for thin-film transistors, J. Mater. Chem. C. 5 (2017) 9273-9280.

DOI: 10.1039/c7tc01953j

Google Scholar

[7] M.J. Pfeifenberger, M. Mangang, S. Wurster, J. Reiser, A. Hohenwarter, W. Pfleging, R. Pippan, The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation, Mater. Des. 121 (2017) 109-118.

DOI: 10.1016/j.matdes.2017.02.012

Google Scholar

[8] I. Park, Z. Li, A.P. Pisano, R.S. Williams, Selective surface functionalization of silicon nanowires via nanoscale Joule heating, Nano Lett. 7 (2007) 3106-3111.

DOI: 10.1021/nl071637k

Google Scholar

[9] G.J. Leggett, Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms, Nanoscale. 4 (2012) 1840-1855.

DOI: 10.1039/c2nr11458e

Google Scholar

[10] Y. Nakata, K. Tsuchida, N. Miyanaga, H. Furusho, Liquidly process in femtosecond laser processing, Appl. Surf. Sci. 255 (2009) 9761-9763.

DOI: 10.1016/j.apsusc.2009.04.066

Google Scholar

[11] D. Mijatovic, J.C. Eijkel, A. van den Berg, Technologies for nanofluidic systems: top-down vs. bottom-up – a review, Lab Chip. 5 (2005) 492-500.

DOI: 10.1039/b416951d

Google Scholar

[12] A.M. Darwish, W.H. Eisa, A.A. Shabaka, M.H. Talaat, Synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment, Spectrosc. Lett. 48 (2015) 638-645.

DOI: 10.1080/00387010.2014.948210

Google Scholar

[13] D.A. Kochuev, R.V. Chkalov, V.G. Prokoshev, K.S. Khorkov, Effect of laser radiation on the surface of a solid body and the formation of micro-and nanostructures, Bull. Russ. Acad. Sci.: Phys. 84 (2020) 443-446.

DOI: 10.3103/s1062873820030120

Google Scholar

[14] Y. Liang, P. Liu, H.B. Li, G.W. Yang, ZnMoO4 micro-and nanostructures synthesized by electrochemistry-assisted laser ablation in liquids and their optical properties, Cryst. Growth Des. 12 (2012) 4487-4493.

DOI: 10.1021/cg3006629

Google Scholar

[15] Z. Yan, D.B. Chrisey, Pulsed laser ablation in liquid for micro-/nanostructure generation, J. Photochem. Photobiol. C 13 (2012) 204-223.

DOI: 10.1016/j.jphotochemrev.2012.04.004

Google Scholar

[16] I.N. Saraeva, S.I. Kudryashov, V.N. Lednev, S.V. Makarov, S.M. Pershin, A.A. Rudenko, A.A. Ionin, Single-and multishot femtosecond laser ablation of silicon and silver in air and liquid environments: Plume dynamics and surface modification, Appl. Surf. Sci. 476 (2019) 576-586.

DOI: 10.1016/j.apsusc.2019.01.092

Google Scholar

[17] H. Hou, B. Yang, X. Mao, V. Zorba, P. Ran, R.E. Russo, Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel, Opt. Express. 26 (2018) 13425-13435.

DOI: 10.1364/oe.26.013425

Google Scholar

[18] H. Huang, J. Lai, J. Lu, Z. Li, Pulsed laser ablation of bulk target and particle products in liquid for nanomaterial fabrication, AIP Adv. 9 (2019) 015307.

DOI: 10.1063/1.5082695

Google Scholar

[19] J. Zhang, M. Chaker, D. Ma, Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications, J. Colloid Interface Sci. 489 (2017) 138-149.

DOI: 10.1016/j.jcis.2016.07.050

Google Scholar

[20] D.A. Kochuev, A.S. Raznoschikov, R.V. Chkalov, Ablative laser processing of metals and dielectrics in an electrostatic field, IOP Conf. Ser.: Mater. Sci. Eng. 969 (2020) 012034.

DOI: 10.1088/1757-899x/969/1/012034

Google Scholar