Pulsed Laser Deposition of Thin-Film Coatings in an Electrostatic Field

Article Preview

Abstract:

The work is devoted to the problem of thin metal coatings deposition on dielectric substrates using the method of target material pulsed laser evaporation. The main advantage of laser ablation over other methods of coating deposition is the possibility of using practically any material as a target, while the resulting films are characterized by a high correspondence of the phase and chemical composition to the target material. The possibility of using an electrostatic field to improve the efficiency of coating deposition process is considered. Under the action of an electric field formed between the plates of high-voltage electrodes, the ablation products leave the treatment area and settle on the substrate surface. Examples of coatings deposited under various ablation conditions are shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

753-757

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, A.N. Zolotov, V.G. Prokoshev, Femtosecond laser-induced formation of low-dimensional thin-films elements, J. Phys. Conf. Ser. 1164 (2019) 012009.

DOI: 10.1088/1742-6596/1164/1/012009

Google Scholar

[2] R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, D.G. Vasilchenkova, V.G. Prokoshev, Formation of optical antennas interfaces by laser processing of thin metal coatings, J. Phys. Conf. Ser. 1331 (2019) 012011.

DOI: 10.1088/1742-6596/1331/1/012011

Google Scholar

[3] R.V. Chkalov, D.A. Kochuev, K.S. Khorkov, V.G. Prokoshev, Fabrication of bicomponent nanoantennas interfaces by femtosecond laser ablation method, EPJ Web of Conferences. 220 (2019) 03008.

DOI: 10.1051/epjconf/201922003008

Google Scholar

[4] S.F. Toosi, S. Moradi, S.G. Hatzikiriakos, Fabrication of micro/nano patterns on polymeric substrates using laser ablation methods to control wettability behavior: a critical review, Rev. Adhes. Adhes. 5 (2017) 55-78.

DOI: 10.7569/raa.2017.097302

Google Scholar

[5] C. Chen, G. Chen, H. Yang, G. Zhang, D. Hu, H. Chen, T. Guo, Solution-processed metal oxide arrays using femtosecond laser ablation and annealing for thin-film transistors, J. Mater. Chem. C. 5 (2017) 9273-9280.

DOI: 10.1039/c7tc01953j

Google Scholar

[6] J. Sarfraz, E. Rosqvist, P. Ihalainen, J. Peltonen, Electro-optical gas sensor consisting of nanostructured paper coating and an ultrathin sensing element, Chemosensors. 7(2) (2019) 23.

DOI: 10.3390/chemosensors7020023

Google Scholar

[7] J. Sarfraz, P. Ihalainen, A. Määttänen, T. Gulin, J. Koskela, C.E. Wilén, J. Peltonen, A printed H2S sensor with electro-optical response, Sens. Actuators B Chem. 191 (2014) 821-827.

DOI: 10.1016/j.snb.2013.10.011

Google Scholar

[8] G.G. Pethuraja, J.W. Zeller, R.E. Welser, A.K. Sood, H. Efstathiadis, P. Haldar, N.K. Dhar, Development of nanostructured antireflection coatings for infrared and electro-optical systems, Sens. Transducers. 214(7) (2017) 46-52.

DOI: 10.1117/12.2277957

Google Scholar

[9] H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M.P. Bernal, Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film, Opt. Express. 20 (2012) 2974-2981.

DOI: 10.1364/oe.20.002974

Google Scholar

[10] R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, Femtosecond laser micromachining of metal thin films, Mater. Today: Proc. 11 (2019) 441-445.

DOI: 10.1016/j.matpr.2019.01.010

Google Scholar

[11] D.A. Kochuev, A.S. Chernikov, K.S. Khorkov, R.V. Chkalov, A.A. Voznesenskaya, V. G. Prokoshev, Surface processing of titanium in the medium of n-hexane by ultrashort laser pulses, J. Phys. Conf. Ser. 1331 (2019) 012010.

DOI: 10.1088/1742-6596/1331/1/012010

Google Scholar

[12] R.V. Chkalov, D.A. Kochuev, K.S. Khorkov, A.A. Voznesenskaya, S.M. Arakelian, Precision formation of PCB topologies by femtosecond laser radiation, J. Phys. Conf. Ser. 1164 (2019) 012018.

DOI: 10.1088/1742-6596/1164/1/012018

Google Scholar

[13] M.J. Pfeifenberger, M. Mangang, S. Wurster, J. Reiser, A. Hohenwarter, W. Pfleging, R. Pippan, The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation, Mater. Des. 121 (2017) 109-118.

DOI: 10.1016/j.matdes.2017.02.012

Google Scholar

[14] B. Yu, K.M. Leung, Q. Guo, W.M. Lau, J. Yang, Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application, Nanotechnology. 22 (2011) 115603.

DOI: 10.1088/0957-4484/22/11/115603

Google Scholar

[15] A. Amri, X. Duan, C.Y. Yin, Z.T. Jiang, M.M. Rahman, T. Pryor, Solar absorptance of copper–cobalt oxide thin film coatings with nano-size, grain-like morphology: optimization and synchrotron radiation XPS studies, Appl. Surf. Sci. 275 (2013) 127-135.

DOI: 10.1016/j.apsusc.2013.01.081

Google Scholar

[16] P.G. Ingole, W. Choi, K.H. Kim, C.H. Park, W.K. Choi, H.K. Lee, Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation, Chem. Eng. J. 243 (2014) 137-146.

DOI: 10.1016/j.cej.2013.12.094

Google Scholar

[17] A.R. Rathmell, B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Adv. Mater. 23 (2011) 4798-4803.

DOI: 10.1002/adma.201102284

Google Scholar

[18] S. Pourjafar, A. Rahimpour, M. Jahanshahi, Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO2 nanoparticles for better performance and surface properties, J. Ind. Eng. Chem. 18 (2012) 1398-1405.

DOI: 10.1016/j.jiec.2012.01.041

Google Scholar

[19] L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. Chu, Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by pulsed laser deposition method, Sol. Energy Mater Sol. Cells. 95 (2011) 2907-2913.

DOI: 10.1016/j.solmat.2011.06.026

Google Scholar

[20] M.I. Serna, S.H. Yoo, S. Moreno, Y. Xi, J.P. Oviedo, H. Choi, M.A. Quevedo-Lopez, Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control, Acs Nano. 10 (2016) 6054-6061.

DOI: 10.1021/acsnano.6b01636

Google Scholar

[21] S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Fabrication of p-type SnO2 films via pulsed laser deposition method by using Sb as dopant, Appl. Surf. Sci. 286 (2013) 417-420.

DOI: 10.1016/j.apsusc.2013.09.107

Google Scholar

[22] D.A. Kochuev, A.S. Raznoschikov, R.V. Chkalov, Ablative laser processing of metals and dielectrics in an electrostatic field, IOP Conf. Ser.: Mater. Sci. Eng. 969 (2020) 012034.

DOI: 10.1088/1757-899x/969/1/012034

Google Scholar

[23] B.J. Jin, S. Im, S.Y. Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Films. 366 (2000) 107-110.

DOI: 10.1016/s0040-6090(00)00746-x

Google Scholar

[24] H. Kim, A. Pique, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices, Thin Solid Films. 377 (2000) 798-802.

DOI: 10.1016/s0040-6090(00)01290-6

Google Scholar