[1]
R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, A.N. Zolotov, V.G. Prokoshev, Femtosecond laser-induced formation of low-dimensional thin-films elements, J. Phys. Conf. Ser. 1164 (2019) 012009.
DOI: 10.1088/1742-6596/1164/1/012009
Google Scholar
[2]
R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, D.G. Vasilchenkova, V.G. Prokoshev, Formation of optical antennas interfaces by laser processing of thin metal coatings, J. Phys. Conf. Ser. 1331 (2019) 012011.
DOI: 10.1088/1742-6596/1331/1/012011
Google Scholar
[3]
R.V. Chkalov, D.A. Kochuev, K.S. Khorkov, V.G. Prokoshev, Fabrication of bicomponent nanoantennas interfaces by femtosecond laser ablation method, EPJ Web of Conferences. 220 (2019) 03008.
DOI: 10.1051/epjconf/201922003008
Google Scholar
[4]
S.F. Toosi, S. Moradi, S.G. Hatzikiriakos, Fabrication of micro/nano patterns on polymeric substrates using laser ablation methods to control wettability behavior: a critical review, Rev. Adhes. Adhes. 5 (2017) 55-78.
DOI: 10.7569/raa.2017.097302
Google Scholar
[5]
C. Chen, G. Chen, H. Yang, G. Zhang, D. Hu, H. Chen, T. Guo, Solution-processed metal oxide arrays using femtosecond laser ablation and annealing for thin-film transistors, J. Mater. Chem. C. 5 (2017) 9273-9280.
DOI: 10.1039/c7tc01953j
Google Scholar
[6]
J. Sarfraz, E. Rosqvist, P. Ihalainen, J. Peltonen, Electro-optical gas sensor consisting of nanostructured paper coating and an ultrathin sensing element, Chemosensors. 7(2) (2019) 23.
DOI: 10.3390/chemosensors7020023
Google Scholar
[7]
J. Sarfraz, P. Ihalainen, A. Määttänen, T. Gulin, J. Koskela, C.E. Wilén, J. Peltonen, A printed H2S sensor with electro-optical response, Sens. Actuators B Chem. 191 (2014) 821-827.
DOI: 10.1016/j.snb.2013.10.011
Google Scholar
[8]
G.G. Pethuraja, J.W. Zeller, R.E. Welser, A.K. Sood, H. Efstathiadis, P. Haldar, N.K. Dhar, Development of nanostructured antireflection coatings for infrared and electro-optical systems, Sens. Transducers. 214(7) (2017) 46-52.
DOI: 10.1117/12.2277957
Google Scholar
[9]
H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M.P. Bernal, Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film, Opt. Express. 20 (2012) 2974-2981.
DOI: 10.1364/oe.20.002974
Google Scholar
[10]
R.V. Chkalov, K.S. Khorkov, D.A. Kochuev, Femtosecond laser micromachining of metal thin films, Mater. Today: Proc. 11 (2019) 441-445.
DOI: 10.1016/j.matpr.2019.01.010
Google Scholar
[11]
D.A. Kochuev, A.S. Chernikov, K.S. Khorkov, R.V. Chkalov, A.A. Voznesenskaya, V. G. Prokoshev, Surface processing of titanium in the medium of n-hexane by ultrashort laser pulses, J. Phys. Conf. Ser. 1331 (2019) 012010.
DOI: 10.1088/1742-6596/1331/1/012010
Google Scholar
[12]
R.V. Chkalov, D.A. Kochuev, K.S. Khorkov, A.A. Voznesenskaya, S.M. Arakelian, Precision formation of PCB topologies by femtosecond laser radiation, J. Phys. Conf. Ser. 1164 (2019) 012018.
DOI: 10.1088/1742-6596/1164/1/012018
Google Scholar
[13]
M.J. Pfeifenberger, M. Mangang, S. Wurster, J. Reiser, A. Hohenwarter, W. Pfleging, R. Pippan, The use of femtosecond laser ablation as a novel tool for rapid micro-mechanical sample preparation, Mater. Des. 121 (2017) 109-118.
DOI: 10.1016/j.matdes.2017.02.012
Google Scholar
[14]
B. Yu, K.M. Leung, Q. Guo, W.M. Lau, J. Yang, Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application, Nanotechnology. 22 (2011) 115603.
DOI: 10.1088/0957-4484/22/11/115603
Google Scholar
[15]
A. Amri, X. Duan, C.Y. Yin, Z.T. Jiang, M.M. Rahman, T. Pryor, Solar absorptance of copper–cobalt oxide thin film coatings with nano-size, grain-like morphology: optimization and synchrotron radiation XPS studies, Appl. Surf. Sci. 275 (2013) 127-135.
DOI: 10.1016/j.apsusc.2013.01.081
Google Scholar
[16]
P.G. Ingole, W. Choi, K.H. Kim, C.H. Park, W.K. Choi, H.K. Lee, Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation, Chem. Eng. J. 243 (2014) 137-146.
DOI: 10.1016/j.cej.2013.12.094
Google Scholar
[17]
A.R. Rathmell, B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Adv. Mater. 23 (2011) 4798-4803.
DOI: 10.1002/adma.201102284
Google Scholar
[18]
S. Pourjafar, A. Rahimpour, M. Jahanshahi, Synthesis and characterization of PVA/PES thin film composite nanofiltration membrane modified with TiO2 nanoparticles for better performance and surface properties, J. Ind. Eng. Chem. 18 (2012) 1398-1405.
DOI: 10.1016/j.jiec.2012.01.041
Google Scholar
[19]
L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. Chu, Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by pulsed laser deposition method, Sol. Energy Mater Sol. Cells. 95 (2011) 2907-2913.
DOI: 10.1016/j.solmat.2011.06.026
Google Scholar
[20]
M.I. Serna, S.H. Yoo, S. Moreno, Y. Xi, J.P. Oviedo, H. Choi, M.A. Quevedo-Lopez, Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control, Acs Nano. 10 (2016) 6054-6061.
DOI: 10.1021/acsnano.6b01636
Google Scholar
[21]
S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, Y. Jin, Fabrication of p-type SnO2 films via pulsed laser deposition method by using Sb as dopant, Appl. Surf. Sci. 286 (2013) 417-420.
DOI: 10.1016/j.apsusc.2013.09.107
Google Scholar
[22]
D.A. Kochuev, A.S. Raznoschikov, R.V. Chkalov, Ablative laser processing of metals and dielectrics in an electrostatic field, IOP Conf. Ser.: Mater. Sci. Eng. 969 (2020) 012034.
DOI: 10.1088/1757-899x/969/1/012034
Google Scholar
[23]
B.J. Jin, S. Im, S.Y. Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Films. 366 (2000) 107-110.
DOI: 10.1016/s0040-6090(00)00746-x
Google Scholar
[24]
H. Kim, A. Pique, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices, Thin Solid Films. 377 (2000) 798-802.
DOI: 10.1016/s0040-6090(00)01290-6
Google Scholar