Magnetic Study on Divalent Ion Substituted Barium Hexaferrites

Article Preview

Abstract:

Magnetic properties of Co, Ni and Zn substituted barium hexaferrite (BaM) samples prepared by solid state ceramic method were studied. Saturation magnetisation were found higher for Zn-substituted BaM, whereas, coercivity is higher for Co2+ and Ni2+ ion substituted samples. Anisotropy field for all substituted samples was calculated by the law of approaching saturation. Remanence, squareness and thermomagnetic plot suggest Zn2+ ions restricts the magnetic interaction of various sites in BaM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

714-719

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kojima, Fundamental properties of hexagonal ferrites with magnetoplumbite structure, in: K.H.J. Buschow (Ed.), Handb. Ferromagn. Mater., Elsevier, Amsterdam, 1982, pp.305-391.

DOI: 10.1016/s1567-2719(82)03008-x

Google Scholar

[2] V.G. Harris, Modern Microwave Ferrites, IEEE Trans. Magn. 48 (2012) 1075-1104.

Google Scholar

[3] R.C. Pullar, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci. 57 (2012) 1191-1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[4] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, A.S. Semisalova, D.M. Galimov, S.A. Gudkova, I.V. Chumanov, L.I. Isaenko, R. Niewa, Growth, structural and magnetic characterization of Al-substituted barium hexaferrite single crystals, J. Alloys Compd. 628 (2015) 1043-1046.

DOI: 10.1016/j.jallcom.2014.12.124

Google Scholar

[5] T. Sakai, C.N. Chinnasamy, S.D. Yoon, A. Geiler, C. Vittoria, V.G. Harris, Large-scale chemical synthesis of shape and size controlled BaFe12-xScxO19 platelets for in-plane oriented thick screen printed films, J. Appl. Phys. 103 (2008) 07E515.

DOI: 10.1063/1.2839599

Google Scholar

[6] Y.S. Lau, D. Nicholson, Barium Ferrite Tuned-Indium Phosphide Gunn Millimeter Wave Oscillators, in: IEEE MTT-S Dig., Institute of Electrical and Electronics Engineers (IEEE), 1986: pp.183-186.

DOI: 10.1109/mwsym.1986.1132144

Google Scholar

[7] S. Verma, O.P. Pandey, A. Paesano, P. Sharma, A. Paesano Jr., P. Sharma, Structural and magnetic properties of CoTi substituted barium hexaferrite thick films, J. Alloys Compd. 678 (2016) 284-289.

DOI: 10.1016/j.jallcom.2016.03.283

Google Scholar

[8] R. Sai, M. Sato, T. Shigeru, S. Yabukami, M. Yamaguchi, CoTi-substituted SrM-based composite sheets High frequency permeability and electromagnetic noise suppression above 6 GHz, J. Magn. Magn. Mater. 459 (2018) 49-56.

DOI: 10.1016/j.jmmm.2017.12.051

Google Scholar

[9] Z. Haijun, L. Zhichao, Y. Xi, Z. Liangying, W. Mingzhong, Complex permittivity, permeability, and microwave absorption of Zn- and Ti-substituted barium ferrite by citrate sol-gel process, Mater. Sci. Eng. B. 96 (2002) 289-295.

DOI: 10.1016/s0921-5107(02)00381-1

Google Scholar

[10] H. Sözeri, H. Deligöz, H. Kavas, A. Baykal, Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M=Mn2+, Co2+, Cu2+, Ni2+, Zn2+), Ceram. Int. 40 (2014) 864-8657.

DOI: 10.1016/j.ceramint.2014.01.082

Google Scholar

[11] C. Kittel, Theory of the dispersion of magnetic permeability in ferromagnetic materials at microwave frequencies, Phys. Rev. 70 (1946) 281-290.

DOI: 10.1103/physrev.70.281

Google Scholar

[12] C.P. Hartwig, D.W. Readey, Ferrite film circulator, J. Appl. Phys. 41 (1970) 1351-1352.

DOI: 10.1063/1.1658938

Google Scholar

[13] R. Grossinger, A critical examination of the law of approach to saturation. I. Fit procedure, Phys. Status Solidi. 66 (1981) 665-674.

DOI: 10.1002/pssa.2210660231

Google Scholar

[14] Y.Y. Liu, M.G.B. Drew, Y.Y. Liu, J. Wang, M. Zhang, Preparation, characterization and magnetic properties of the doped barium hexaferrites BaFe12-2xCox/2Znx/2SnxO19, x=0.0-2.0, J. Magn. Magn. Mater. 322 (2010) 814-818.

DOI: 10.1016/j.jmmm.2009.11.009

Google Scholar

[15] S. V. Trukhanov, Peculiarities of the magnetic state in the system La0.70Sr0.30MnO(3 - γ) (0 ≤ γ ≤ 0.25), J. Exp. Theor. Phys. 100 (2005) 95-105.

Google Scholar

[16] S. V. Trukhanov, I.O. Troyanchuk, A. V. Trukhanov, I.M. Fita, A.N. Vasil'ev, A. Maignan, H. Szymczak, Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure, JETP Lett. 83 (2006) 33-36.

DOI: 10.1134/s0021364006010085

Google Scholar

[17] D.A. Vinnik, A.S. Semisalova, L.S. Mashkovtseva, A.K. Yakushechkina, S. Nemrava, S.A. Gudkova, D.A. Zherebtsov, N.S. Perov, L.I. Isaenko, R. Niewa, Growth, structural and magnetic characterization of Zn-substituted barium hexaferrite single crystals, Mater. Chem. Phys. 163 (2015) 416-420.

DOI: 10.1016/j.matchemphys.2015.07.059

Google Scholar

[18] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, A.S. Semisalova, D.M. Galimov, S.A. Gudkova, I. V. Chumanov, L.I. Isaenko, R. Niewa, Growth, structural and magnetic characterization of Co- and Ni-substituted barium hexaferrite single crystals, J. Alloys Compd. 628 (2015) 480-484.

DOI: 10.1016/j.jallcom.2014.12.124

Google Scholar

[19] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd ed., Wiley, Piscataway, (2008).

Google Scholar

[20] P. Shepherd, K.K. Mallick, R.J. Green, Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation, J. Magn. Magn. Mater. 311 (2007) 683-692.

DOI: 10.1016/j.jmmm.2006.08.046

Google Scholar

[21] S. Mahadevan, V. Sathe, V.R. Reddy, P. Sharma, Site occupation and magnetic studies in La-Co substituted barium hexaferrite, IEEE Trans. Magn. 56 (2020) 1-6.

DOI: 10.1109/tmag.2020.3014071

Google Scholar

[22] U. Topal, Factors influencing the remanent properties of hard magnetic barium ferrites: Impurity phases and grain sizes, J. Magn. Magn. Mater. 320 (2008) 331-335.

DOI: 10.1016/j.jmmm.2007.06.025

Google Scholar

[23] X.S. Liu, L. Fernandez-Garcia, F. Hu, D.R. Zhu, M. Suárez, J. Luis, J.L. Menéndez, Magneto-optical Kerr spectra and magnetic properties of Co-substituted M-type strontium ferrites, Mater. Chem. Phys. 133 (2012) 961-964.

DOI: 10.1016/j.matchemphys.2012.01.123

Google Scholar

[24] K. Alamelu Mangai, K.T. Selvi, M. Priya, Effect of Co and Sm substitutions on the magnetic interactions of M-type strontium hexaferrite nanoparticles, J. Supercond. Nov. Magn. 33 (2020) 713-720.

DOI: 10.1007/s10948-019-05227-0

Google Scholar

[25] P. Behera, S. Ravi, Effect of Ni doping on structural, magnetic and dielectric properties of M-type barium hexaferrite, Solid State Sci. 89 (2019) 139-149.

DOI: 10.1016/j.solidstatesciences.2019.01.003

Google Scholar

[26] R. Topkaya, Effect of Zn substitution on temperature dependent magnetic properties of BaFe12O19 hexaferrites, J. Alloys Compd. 725 (2017) 1230-1237.

DOI: 10.1016/j.jallcom.2017.07.248

Google Scholar

[27] A. Baykal, I.A. Auwal, S. Güner, H. Sözeri, Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites, J. Magn. Magn. Mater. 430 (2017) 29-35.

DOI: 10.1016/j.jmmm.2016.11.062

Google Scholar

[28] A. Baykal, H. Sözeri, H. Güngüneş, I. Auwal, S.E. Shirsath, M. Sertkol, M. Amir, Synthesis and structural and magnetic characterization of BaZnxFe12−xO19 hexaferrite: hyperfine interactions, J. Supercond. Nov. Magn. 30 (2017) 1585-1592.

DOI: 10.1007/s10948-016-3958-4

Google Scholar