The Diffusion Isotope Effect and Diffusion Mechanism in Liquid Cu-Ag and Cu-Ni Alloys

Article Preview

Abstract:

In this paper, the diffusion isotope effect and diffusion mechanism are investigated by means of molecular dynamics simulations in two liquid alloys, Ni-Ag and Ni-Cu. The values for the diffusion isotope effect parameter allow for the estimate of the number of atoms which are moving cooperatively in a basic diffusion event as experienced by a given atomic species. It is shown that the composition dependence of ND is typically very small. However, the temperature dependence of this parameter is much more pronounced. In addition, it is shown that, on average, in these alloys and temperatures considered, ND is limited to the range: 5<ND<17. This is consistent with results of molecular dynamics simulations on the average coordination number calculations. This would suggest that, together with a given atom, depending on temperature, the neighbouring atoms are all involved in the basic diffusion event.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-145

Citation:

Online since:

December 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Balucani and M. Zoppi, Dynamics of the liquid state. Clarendon Press, New York, (1994).

Google Scholar

[2] A. Meyer and F. Kargl, Diffusion of Mass in Liquid Metals and Alloys-Recent Experimental Developments and New Perspectives,, Int. J. Microgravity Sci. Appl, vol. 30, no. 1, pp.30-35, (2013).

Google Scholar

[3] K. Binder and W. Kob, Glassy materials and disordered solids: An introduction to their statistical mechanics. World scientific Publishing Co. Pte. Ltd., Singapore, (2011).

DOI: 10.1142/7300

Google Scholar

[4] R. Heringer, C.-A. Gandin, G. Lesoult, and H. Henein, Atomized droplet solidification as an equiaxed growth model,, Acta materialia, vol. 54, no. 17, pp.4427-4440, (2006).

DOI: 10.1016/j.actamat.2006.05.015

Google Scholar

[5] M. Rappaz and W. J. Boettinger, On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients,, Acta Materialia, vol. 47, no. 11, pp.3205-3219, (1999).

DOI: 10.1016/s1359-6454(99)00188-3

Google Scholar

[6] A. D. Le Claire, Physical Chemistry, (Solid State). Academic Press, New York, (1970).

Google Scholar

[7] P. Kuhn, and J. Horbach, F. Kargl, A. Meyer and Th. Voigtmann, (2014) Diffusion and interdiffusion in binary metallic melts,, Physical Review B, 90, 024309.

DOI: 10.1103/physrevb.90.024309

Google Scholar

[8] E. Sondermann, F. Kargl and A. Meyer, (2016) Influence of cross correlations on interdiffusion in Al-rich Al-Ni melts. Physical Review B, 93 (18), p.184201.

DOI: 10.1103/physrevb.93.184201

Google Scholar

[9] N. L. Peterson, Isotope Effects in Diffusion,, in: Diffusion in Solids. Recent Developments, Eds A.S. Nowick and J.J. Burton, Academic Press, 1975, New York, San Francisco, London.

Google Scholar

[10] H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Vol. 155 of Springer Series in Solid-State Sciences, 2007, Springer Science & Business Media, Berlin Heidelberg.

DOI: 10.1007/978-3-540-71488-0

Google Scholar

[11] U. Sarder, A. V. Evteev, E. V. Levchenko, A. Kromik, I. V. Belova, and G. E. Murch, Molecular Dynamics Study of Mass Transport Properties of Liquid Cu-Ag Alloys,, Diffusion Foundations, vol. 9, pp.58-72, (2016).

DOI: 10.4028/www.scientific.net/df.9.58

Google Scholar

[12] U. Sarder, Modelling of Thermotransport in Engineering Materials,, PhD Dissertation, Mechanical Engineering, University of Newcastle, (2019).

Google Scholar

[13] R. J. Bearman and D. L. Jolly, Mass dependence of the self diffusion coefficients in two equimolar binary liquid Lennard-Jones systems determined through molecular dynamics simulation,, Molecular Physics, vol. 44, no. 3, pp.665-675, (1981).

DOI: 10.1080/00268978100102711

Google Scholar

[14] R. J. Bearman and D. L. Jolly, Molecular dynamics simulations of self-diffusion coefficients in binary isotopic Lennard-Jones solutions: Comparison with experimental data on isotope effects in benzene diffusion,, Molecular Physics, vol. 52, no. 2, pp.447-460, (1984).

DOI: 10.1080/00268978400101321

Google Scholar

[15] B. J. Alder, W. E. Alley, and J. H. Dymond, Studies in molecular dynamics. XIV. Mass and size dependence of the binary diffusion coefficient,, The Journal of Chemical Physics, vol. 61, no. 4, pp.1415-1420, (1974).

DOI: 10.1063/1.1682067

Google Scholar

[16] P. Schofield, Computer simulation studies of the liquid state,, Computer physics communications, vol. 5, no. 1, pp.17-23, (1973).

Google Scholar

[17] I. Ebbsjo, I. Waller, P. Schofield, and K. Skold, Diffusion in liquid mixtures of isotopes,, Journal of Physics C: Solid State Physics, vol. 7, no. 21, p.3891, (1974).

DOI: 10.1088/0022-3719/7/21/011

Google Scholar

[18] N. Kiriushcheva and S. V. Kuzmin, Influence of mass difference on dynamic properties of isotope mixtures,, Physica A: Statistical Mechanics and its Applications, vol. 352, no. 2-4, pp.509-521, (2005).

DOI: 10.1016/j.physa.2005.01.010

Google Scholar

[19] U. Sarder, T. Ahmed, W. Y. Wang, R. Kozubski, Z.-K. Liu, I. V. Belova, and G. E. Murch, Mass and thermal transport in liquid Cu-Ag alloys,, Philosophical Magazine, pp.1-24, (2018).

DOI: 10.1080/14786435.2018.1546958

Google Scholar

[20] I. V. Belova, T. Ahmed, U. Sarder, W. Y. Wang, R. Kozubski, Z.-K. Liu, D. Holland-Moritz, A. Meyer, and G. E. Murch, Computer simulation of thermodynamic factors in Ni-Al and Cu-Ag liquid alloys,, Computational Materials Science, vol. 166, pp.124-135, (2019).

DOI: 10.1016/j.commatsci.2019.04.048

Google Scholar

[21] P. Williams, Y. Mishin, and J. Hamilton, An embedded-atom potential for the Cu–Ag system,, Modelling and Simulation in Materials Science and Engineering, vol. 14(5), pp.817-833, (2006).

DOI: 10.1088/0965-0393/14/5/002

Google Scholar

[22] F. Fischer , G. Schmitz, S.M. Eich, A systematic study of grain boundary segregation and grain boundary formation energy using a new copperenickel embedded-atom potential, Acta Materialia, 176 (2019) 220-231.

DOI: 10.1016/j.actamat.2019.06.027

Google Scholar

[23] S. Chapman, T. G. Cowling, and D. Burnett, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, 3rd ed. Cambridge university press, New York, (1990).

DOI: 10.2307/3609795

Google Scholar

[24] A. H. Schoen, Correlation and the isotope effect for diffusion in crystalline solids,, Physical Review Letters, vol. 1, no. 4, p.138, (1958).

Google Scholar

[25] H. R. Schober, Isotope effect in the diffusion of binary liquids,, Solid state communications, vol. 119, no. 2, pp.73-77, (2001).

DOI: 10.1016/s0038-1098(01)00219-8

Google Scholar

[26] W.Y. Wang, H.Z. Fang, S.L. Shang, H.Zhang, Y.Wang, X.Hui, S.Mathaudhu, Z.K. Liu, Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations, Physica B: Condensed Matter, 406 (2011) pp.3089-3097.

DOI: 10.1016/j.physb.2011.05.013

Google Scholar