[1]
Li, M.; Lu, J.; Chen, Z.; Khalil, A. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561-1800585.
DOI: 10.1002/adma.201800561
Google Scholar
[2]
George E. Blomgren. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2016, 164 (1), A5019.
Google Scholar
[3]
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4 (9), 3243–3262.
DOI: 10.1039/c1ee01598b
Google Scholar
[4]
Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264.
DOI: 10.1016/j.mattod.2014.10.040
Google Scholar
[5]
Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nature Communications 2020, 11 (1550), 1-9.
Google Scholar
[6]
Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markowsky, B.; Aurbach, D.; Dixit, M.; Major, D. T. Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1-x-yCoxMnyO2 and LiNi1-x-yCoxAlyO2. Chem. Mater. 2020, 32, 915-952.
DOI: 10.1021/acs.chemmater.9b04066
Google Scholar
[7]
Chen, R.; Zhao, T.; Zhang, X.; Li, L.; Wu, F. Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale horizons 2016, 1 (6), 423–444.
DOI: 10.1039/c6nh00016a
Google Scholar
[8]
Xu, J.; Dou, S.; Liu, H.; Dai, L. Cathode materials for next generation lithium ion batteries. Nano Energy 2013, 2 (4), 439–442.
DOI: 10.1016/j.nanoen.2013.05.013
Google Scholar
[9]
Hoang, K.; Johannes, M. D. Defect physics in complex energy materials. J. Phys.: Condens. Matter 2018, 30, 293001-293022.
DOI: 10.1088/1361-648x/aacb05
Google Scholar
[10]
Hoang, K.; Johannes, M. D. Defect Physics and Chemistry in Layered Mixed Transition Metal Oxide Cathode Materials: (Ni,Co,Mn) vs (Ni,Co,Al). Chem. Mater. 2016, 28, 1325-1334.
DOI: 10.1021/acs.chemmater.5b04219
Google Scholar
[11]
Zheng Li; Natasha A. Chernova; Megan Roppolo; Shailesh Upreti; Cole Petersburg; Faisal M. Alamgir; M. Stanley Whittingham. Comparative Study of the Capacity and Rate Capability of LiNi y Mn y Co1–2y O2 (y = 0.5, 0.45, 0.4, 0.33). J. Electrochem. Soc. 2011, 158 (5), A516.
DOI: 10.1149/1.3562212
Google Scholar
[12]
Kim, M.-H.; Shin, H.-S.; Shin, D.; Sun, Y.-K. Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation. Journal of Power Sources 2006, 159 (2), 1328–1333.
DOI: 10.1016/j.jpowsour.2005.11.083
Google Scholar
[13]
Wu, F.; Wang, M.; Su, Y.; Bao, L.; Chen, S. Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2-coating. Electrochimica Acta 2009, 54 (27), 6803–6807.
DOI: 10.1016/j.electacta.2009.06.075
Google Scholar
[14]
Soni, S. K.; Sheldon, B. W.; Xiao, X.; Bower, A. F.; Verbrugge, M. W. Diffusion Mediated Lithiation Stresses in Si Thin Film Electrodes. J. Electrochem. Soc. 2012, 159 (9), A1520-A1527.
DOI: 10.1149/2.009209jes
Google Scholar
[15]
Ceder, G.; Doyle, M.; Arora, P.; Fuentes, Y. Computational Modeling and Simulation for Rechargeable Batteries. MRS Bull. 2002, 27 (08), 619–623.
DOI: 10.1557/mrs2002.198
Google Scholar
[16]
Bhatt, M. D.; O'Dwyer, C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical chemistry chemical physics 2015, 17 (7), 4799–4844.
DOI: 10.1039/c4cp05552g
Google Scholar
[17]
Fallahzadeh, R.; Farhadian, N. Molecular dynamics simulation of lithium ion diffusion in LiCoO2 cathode material. Solid State Ionics 2015, 280, 10–17.
DOI: 10.1016/j.ssi.2015.07.001
Google Scholar
[18]
Haruyama, J.; Sodeyama, K.; Tateyama, Y. Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery. ACS applied materials & interfaces 2017, 9 (1), 286–292.
DOI: 10.1021/acsami.6b08435
Google Scholar
[19]
van der Ven, A. Lithium Diffusion in Layered Li[sub x]CoO[sub 2]. Electrochem. Solid-State Lett. 1999, 3 (7), 301.
DOI: 10.1149/1.1391130
Google Scholar
[20]
Islam, M. S.; Fisher, C. A. J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chemical Society reviews 2014, 43 (1), 185–204.
DOI: 10.1039/c3cs60199d
Google Scholar
[21]
Urban, A.; Seo, D.-H.; Ceder, G. Computational understanding of Li-ion batteries. npj Comput Mater 2016, 2 (1), 1126.
DOI: 10.1038/npjcompumats.2016.2
Google Scholar
[22]
van der Ven, A.; Bhattacharya, J.; Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Accounts of chemical research 2013, 46 (5), 1216–1225.
DOI: 10.1021/ar200329r
Google Scholar
[23]
Xia, H.; Lu, L.; Ceder, G. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. Journal of Power Sources 2006, 159 (2), 1422–1427.
DOI: 10.1016/j.jpowsour.2005.12.012
Google Scholar
[24]
Shiraki, S.; Oki, H.; Hitosugi, T. Li diffusion in (110)‐oriented LiCoO2 thin films grown on Au and Pt (110) substrates. Surface and Interface Analysis 2016, 48 (11), 1240–1243.
DOI: 10.1002/sia.6108
Google Scholar
[25]
Amin, R.; Chiang, Y.-M. Characterization of Electronic and Ionic Transport in Li 1-x Ni 0.33 Mn 0.33 Co 0.33 O 2 (NMC 333 ) and Li 1-x Ni 0.50 Mn 0.20 Co 0.30 O 2 (NMC 523 ) as a Function of Li Content. J. Electrochem. Soc. 2016, 163 (8), A1512-A1517.
DOI: 10.1149/2.0131608jes
Google Scholar
[26]
Wu, S.-L.; Zhang, W.; Song, X.; Shukla, A. K.; Liu, G.; Battaglia, V.; Srinivasan, V. High Rate Capability of Li(Ni1∕3Mn1∕3Co1∕3)O2 Electrode for Li-Ion Batteries. J. Electrochem. Soc. 2012, 159 (4), A438.
DOI: 10.1149/2.062204jes
Google Scholar
[27]
Li, X.; Liu, J.; Banis, M. N.; Lushington, A.; Li, R.; Cai, M.; Sun, X. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 2014, 7 (2), 768–778.
DOI: 10.1039/c3ee42704h
Google Scholar
[28]
Zheng, W.; Shui, M.; Shu, J.; Gao, S.; Xu, D.; Chen, L.; Feng, L.; Ren, Y. GITT studies on oxide cathode LiNi1/3Co1/3Mn1/3O2 synthesized by citric acid assisted high-energy ball milling. Bull Mater Sci 2013, 36 (3), 495–498.
DOI: 10.1007/s12034-013-0480-1
Google Scholar
[29]
Tian, J.; Su, Y.; Wu, F.; Xu, S.; Chen, F.; Chen, R.; Li, Q.; Li, J.; Sun, F.; Chen, S. High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li(+) Diffusion Pathway. ACS applied materials & interfaces 2016, 8 (1), 582–587.
DOI: 10.1021/acsami.5b09641
Google Scholar
[30]
Hasegawa, G.; Kuwata, N.; Tanaka, Y.; Miyazaki, T.; Ishigaki, N.; Takada, K.; Kawamura, J. Tracer diffusion coefficients of Li+ ions in c-axis oriented LixCoO2 thin films measured by secondary ion mass spectrometry. Phys. Chem. Chem. Phys. 2021, 23, 2438-2448.
DOI: 10.1039/d0cp04598e
Google Scholar
[31]
Uxa, D.; Holmes, H. J.; Meyer, K.; Dörrer, L.; Schmidt, H. Lithium tracer diffusion in LiNi0.33Mn0.33Co0.33O2 cathode material for lithium-ion batteries. Phys. Chem. Chem. Phys. 2021, 23, 5992-5998.
DOI: 10.1039/d0cp05593j
Google Scholar
[32]
Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer Berlin Heidelberg, (2007).
Google Scholar
[33]
Rahn, J.; Hüger, E.; Dörrer, L.; Ruprecht, B.; Heitjans, P.; Schmidt, H. Li self-diffusion in lithium niobate single crystals at low temperatures. Phys. Chem. Chem. Phys. 2012, 14 (7), 2427-2433.
DOI: 10.1039/c2cp23548j
Google Scholar
[34]
J. A. Kilner, B. C. H. Steele, L. Ilkov. Oxygen self-diffusion studies using negative-ion secondary ion mass spectrometry (SIMS). Solid State Ionics 1984, 12, 89-97,.
DOI: 10.1016/0167-2738(84)90134-6
Google Scholar
[35]
Paul van der Heide. Secondary Ion Mass Spectrometry: An introduction to Principles and Practices; John Wiley and Sons, (2014).
Google Scholar
[36]
Kosuri; Y.R.; Penki, T. R.; Nookala, M.; Morgen, P.; Gowravaram, R. Investigations on sputter depositied LiCoO2 thin films from powder target. Adv. Mat. Lett. 2013, 4 (8), 615-620.
DOI: 10.5185/amlett.2012.12479
Google Scholar
[37]
Kim, W.-S. Characteristics of LiCoO2 thin film cathodes according to the annealing ambient for the post-annealing process. Journal of Power Sources 2004, 134, 103-109.
DOI: 10.1016/j.jpowsour.2004.02.035
Google Scholar
[38]
Reimers, J. N.; Dahn, J. R. Electrochemical and In situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2. J. Electrochem. Soc., 1992, 139 (8), 2091-2097.
DOI: 10.1149/1.2221184
Google Scholar
[39]
A. Van der Ven; G. Ceder. Lithium Diffusion in Layered Li x CoO2. Electrochem. Solid-State Lett. 2000, 3 (7), 301.
Google Scholar