Lithium Tracer Diffusion in Sub-Stoichiometric Layered Lithium-Metal-Oxide Compounds

Article Preview

Abstract:

Cathode materials based on lithium-metal-oxide compounds are an essential technical component for lithium-ion batteries, which are still being researched and continuously improved. For a fundamental understanding of kinetic processes at and in electrodes the Li diffusion is of high relevance. Most cathode materials are based on the layered LiCoO2 (LCO) and LiNi0.33Mn0.33Co0.33O2 (NMC333). In the present study Li tracer self-diffusion is investigated in polycrystalline sintered bulk samples of sub-stoichiometric Li0.9CoO2 at 145 °C ≤ T ≤ 350 °C and compared to Li0.9Ni0.33Mn0.33Co0.33O2 in the temperature range between 110 and 350 °C. For analysis, stable 6Li tracers are used in combination with secondary ion mass spectrometry (SIMS). The Li tracer diffusivities D* of both compounds with a sub-stoichiometric Li concentration are identical within error limits and can be described by the Arrhenius law with an activation enthalpy of (0.76 ± 0.13) eV for LCO and (0.85 ± 0.03) eV for NMC333, which is interpreted as the migration energy of a single Li vacancy. This means that a modification of the transition metal (M) layer composition within the LiMO2 structure does not significantly influence lithium diffusion in the temperature range investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-135

Citation:

Online since:

December 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li, M.; Lu, J.; Chen, Z.; Khalil, A. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561-1800585.

DOI: 10.1002/adma.201800561

Google Scholar

[2] George E. Blomgren. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2016, 164 (1), A5019.

Google Scholar

[3] Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4 (9), 3243–3262.

DOI: 10.1039/c1ee01598b

Google Scholar

[4] Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264.

DOI: 10.1016/j.mattod.2014.10.040

Google Scholar

[5] Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nature Communications 2020, 11 (1550), 1-9.

Google Scholar

[6] Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markowsky, B.; Aurbach, D.; Dixit, M.; Major, D. T. Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1-x-yCoxMnyO2 and LiNi1-x-yCoxAlyO2. Chem. Mater. 2020, 32, 915-952.

DOI: 10.1021/acs.chemmater.9b04066

Google Scholar

[7] Chen, R.; Zhao, T.; Zhang, X.; Li, L.; Wu, F. Advanced cathode materials for lithium-ion batteries using nanoarchitectonics. Nanoscale horizons 2016, 1 (6), 423–444.

DOI: 10.1039/c6nh00016a

Google Scholar

[8] Xu, J.; Dou, S.; Liu, H.; Dai, L. Cathode materials for next generation lithium ion batteries. Nano Energy 2013, 2 (4), 439–442.

DOI: 10.1016/j.nanoen.2013.05.013

Google Scholar

[9] Hoang, K.; Johannes, M. D. Defect physics in complex energy materials. J. Phys.: Condens. Matter 2018, 30, 293001-293022.

DOI: 10.1088/1361-648x/aacb05

Google Scholar

[10] Hoang, K.; Johannes, M. D. Defect Physics and Chemistry in Layered Mixed Transition Metal Oxide Cathode Materials: (Ni,Co,Mn) vs (Ni,Co,Al). Chem. Mater. 2016, 28, 1325-1334.

DOI: 10.1021/acs.chemmater.5b04219

Google Scholar

[11] Zheng Li; Natasha A. Chernova; Megan Roppolo; Shailesh Upreti; Cole Petersburg; Faisal M. Alamgir; M. Stanley Whittingham. Comparative Study of the Capacity and Rate Capability of LiNi y Mn y Co1–2y O2 (y = 0.5, 0.45, 0.4, 0.33). J. Electrochem. Soc. 2011, 158 (5), A516.

DOI: 10.1149/1.3562212

Google Scholar

[12] Kim, M.-H.; Shin, H.-S.; Shin, D.; Sun, Y.-K. Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation. Journal of Power Sources 2006, 159 (2), 1328–1333.

DOI: 10.1016/j.jpowsour.2005.11.083

Google Scholar

[13] Wu, F.; Wang, M.; Su, Y.; Bao, L.; Chen, S. Surface of LiCo1/3Ni1/3Mn1/3O2 modified by CeO2-coating. Electrochimica Acta 2009, 54 (27), 6803–6807.

DOI: 10.1016/j.electacta.2009.06.075

Google Scholar

[14] Soni, S. K.; Sheldon, B. W.; Xiao, X.; Bower, A. F.; Verbrugge, M. W. Diffusion Mediated Lithiation Stresses in Si Thin Film Electrodes. J. Electrochem. Soc. 2012, 159 (9), A1520-A1527.

DOI: 10.1149/2.009209jes

Google Scholar

[15] Ceder, G.; Doyle, M.; Arora, P.; Fuentes, Y. Computational Modeling and Simulation for Rechargeable Batteries. MRS Bull. 2002, 27 (08), 619–623.

DOI: 10.1557/mrs2002.198

Google Scholar

[16] Bhatt, M. D.; O'Dwyer, C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical chemistry chemical physics 2015, 17 (7), 4799–4844.

DOI: 10.1039/c4cp05552g

Google Scholar

[17] Fallahzadeh, R.; Farhadian, N. Molecular dynamics simulation of lithium ion diffusion in LiCoO2 cathode material. Solid State Ionics 2015, 280, 10–17.

DOI: 10.1016/j.ssi.2015.07.001

Google Scholar

[18] Haruyama, J.; Sodeyama, K.; Tateyama, Y. Cation Mixing Properties toward Co Diffusion at the LiCoO2 Cathode/Sulfide Electrolyte Interface in a Solid-State Battery. ACS applied materials & interfaces 2017, 9 (1), 286–292.

DOI: 10.1021/acsami.6b08435

Google Scholar

[19] van der Ven, A. Lithium Diffusion in Layered Li[sub x]CoO[sub 2]. Electrochem. Solid-State Lett. 1999, 3 (7), 301.

DOI: 10.1149/1.1391130

Google Scholar

[20] Islam, M. S.; Fisher, C. A. J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chemical Society reviews 2014, 43 (1), 185–204.

DOI: 10.1039/c3cs60199d

Google Scholar

[21] Urban, A.; Seo, D.-H.; Ceder, G. Computational understanding of Li-ion batteries. npj Comput Mater 2016, 2 (1), 1126.

DOI: 10.1038/npjcompumats.2016.2

Google Scholar

[22] van der Ven, A.; Bhattacharya, J.; Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Accounts of chemical research 2013, 46 (5), 1216–1225.

DOI: 10.1021/ar200329r

Google Scholar

[23] Xia, H.; Lu, L.; Ceder, G. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. Journal of Power Sources 2006, 159 (2), 1422–1427.

DOI: 10.1016/j.jpowsour.2005.12.012

Google Scholar

[24] Shiraki, S.; Oki, H.; Hitosugi, T. Li diffusion in (110)‐oriented LiCoO2 thin films grown on Au and Pt (110) substrates. Surface and Interface Analysis 2016, 48 (11), 1240–1243.

DOI: 10.1002/sia.6108

Google Scholar

[25] Amin, R.; Chiang, Y.-M. Characterization of Electronic and Ionic Transport in Li 1-x Ni 0.33 Mn 0.33 Co 0.33 O 2 (NMC 333 ) and Li 1-x Ni 0.50 Mn 0.20 Co 0.30 O 2 (NMC 523 ) as a Function of Li Content. J. Electrochem. Soc. 2016, 163 (8), A1512-A1517.

DOI: 10.1149/2.0131608jes

Google Scholar

[26] Wu, S.-L.; Zhang, W.; Song, X.; Shukla, A. K.; Liu, G.; Battaglia, V.; Srinivasan, V. High Rate Capability of Li(Ni1∕3Mn1∕3Co1∕3)O2 Electrode for Li-Ion Batteries. J. Electrochem. Soc. 2012, 159 (4), A438.

DOI: 10.1149/2.062204jes

Google Scholar

[27] Li, X.; Liu, J.; Banis, M. N.; Lushington, A.; Li, R.; Cai, M.; Sun, X. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energy Environ. Sci. 2014, 7 (2), 768–778.

DOI: 10.1039/c3ee42704h

Google Scholar

[28] Zheng, W.; Shui, M.; Shu, J.; Gao, S.; Xu, D.; Chen, L.; Feng, L.; Ren, Y. GITT studies on oxide cathode LiNi1/3Co1/3Mn1/3O2 synthesized by citric acid assisted high-energy ball milling. Bull Mater Sci 2013, 36 (3), 495–498.

DOI: 10.1007/s12034-013-0480-1

Google Scholar

[29] Tian, J.; Su, Y.; Wu, F.; Xu, S.; Chen, F.; Chen, R.; Li, Q.; Li, J.; Sun, F.; Chen, S. High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li(+) Diffusion Pathway. ACS applied materials & interfaces 2016, 8 (1), 582–587.

DOI: 10.1021/acsami.5b09641

Google Scholar

[30] Hasegawa, G.; Kuwata, N.; Tanaka, Y.; Miyazaki, T.; Ishigaki, N.; Takada, K.; Kawamura, J. Tracer diffusion coefficients of Li+ ions in c-axis oriented LixCoO2 thin films measured by secondary ion mass spectrometry. Phys. Chem. Chem. Phys. 2021, 23, 2438-2448.

DOI: 10.1039/d0cp04598e

Google Scholar

[31] Uxa, D.; Holmes, H. J.; Meyer, K.; Dörrer, L.; Schmidt, H. Lithium tracer diffusion in LiNi0.33Mn0.33Co0.33O2 cathode material for lithium-ion batteries. Phys. Chem. Chem. Phys. 2021, 23, 5992-5998.

DOI: 10.1039/d0cp05593j

Google Scholar

[32] Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer Berlin Heidelberg, (2007).

Google Scholar

[33] Rahn, J.; Hüger, E.; Dörrer, L.; Ruprecht, B.; Heitjans, P.; Schmidt, H. Li self-diffusion in lithium niobate single crystals at low temperatures. Phys. Chem. Chem. Phys. 2012, 14 (7), 2427-2433.

DOI: 10.1039/c2cp23548j

Google Scholar

[34] J. A. Kilner, B. C. H. Steele, L. Ilkov. Oxygen self-diffusion studies using negative-ion secondary ion mass spectrometry (SIMS). Solid State Ionics 1984, 12, 89-97,.

DOI: 10.1016/0167-2738(84)90134-6

Google Scholar

[35] Paul van der Heide. Secondary Ion Mass Spectrometry: An introduction to Principles and Practices; John Wiley and Sons, (2014).

Google Scholar

[36] Kosuri; Y.R.; Penki, T. R.; Nookala, M.; Morgen, P.; Gowravaram, R. Investigations on sputter depositied LiCoO2 thin films from powder target. Adv. Mat. Lett. 2013, 4 (8), 615-620.

DOI: 10.5185/amlett.2012.12479

Google Scholar

[37] Kim, W.-S. Characteristics of LiCoO2 thin film cathodes according to the annealing ambient for the post-annealing process. Journal of Power Sources 2004, 134, 103-109.

DOI: 10.1016/j.jpowsour.2004.02.035

Google Scholar

[38] Reimers, J. N.; Dahn, J. R. Electrochemical and In situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2. J. Electrochem. Soc., 1992, 139 (8), 2091-2097.

DOI: 10.1149/1.2221184

Google Scholar

[39] A. Van der Ven; G. Ceder. Lithium Diffusion in Layered Li x CoO2. Electrochem. Solid-State Lett. 2000, 3 (7), 301.

Google Scholar