[1]
H. Kaesche, Corrosion of metals: physicochemical principles and current problems, Springer Science & Business Media, (2012).
Google Scholar
[2]
E. Narita, F. Lawson, K.N. Han, Solubility of oxygen in aqueous electrolyte solutions, Hydrometallurgy. 10 (1983) 21–37.
DOI: 10.1016/0304-386x(83)90074-9
Google Scholar
[3]
F.G. Cottrell, Application of the Cottrell equation to chronoamperometry, Z Phys. Chem. 42 (1902) 385.
Google Scholar
[4]
A. Ghahremaninezhad, A. Dolati, Diffusion-controlled growth model for electrodeposited cobalt nanowires in highly ordered aluminum oxide membrane, in: ECS Trans., 2010: p.13–25.
DOI: 10.1149/1.3503348
Google Scholar
[5]
P.Z. Sotory, Carbon Pyrolized Photoresist Film and Platinum Microelectrode Chronoamperometry Using a Single and Double Potential Step Approach for Dopamine Detection and Electrode Interaction with Cottrell Equation Relations., (2014).
Google Scholar
[6]
J. Newman, K.E. Thomas-Alyea, Electrochemical Systems, (2004).
Google Scholar
[7]
P.T.H.M. Verhallen, L.J.P. Oomen, A.J.J.M. v. d. Elsen, J. Kruger, J.M.H. Fortuin, The diffusion coefficients of helium, hydrogen, oxygen and nitrogen in water determined from the permeability of a stagnant liquid layer in the quasi-s, Chem. Eng. Sci. 39 (1984) 1535–1541.
DOI: 10.1016/0009-2509(84)80082-2
Google Scholar
[8]
D. Bograchev, V. Volgin, A. Davydov, Simple model of mass transfer in template synthesis of metal ordered nanowire arrays, Electrochim. Acta. 96 (2013) 1–7.
DOI: 10.1016/j.electacta.2013.02.079
Google Scholar
[9]
D.A. Bograchev, V.M. Volgin, A.D. Davydov, Mass transfer during metal electrodeposition into the pores of anodic aluminum oxide from a binary electrolyte under the potentiostatic and galvanostatic conditions, Electrochim. Acta. 207 (2016) 247–256.
DOI: 10.1016/j.electacta.2016.04.119
Google Scholar
[10]
V.G. Levich, Physicochemical Hydrodynamics, Englewood Cliffs, N.J., (1962).
Google Scholar
[11]
A.D. Polyanin, V.E. Nazaikinskii, Handbook of linear partial differential equations for engineers and scientists, CRC press, (2015).
DOI: 10.1201/b19056
Google Scholar
[12]
E. Gileadi, E. Kirowa-Eisner, J. Penciner, Interfacial Electrochemistry: An Experimental Approach, Addison-Wesley Publishing Company, Advanced Book Program, NY, (1975).
DOI: 10.1002/bbpc.19760800841
Google Scholar
[13]
Y. Chizmadzhev, V. Markin, M. Tarasevich, Y. Chirkov, Macrokinetics of Processes in Porous Media, Nauka, Moscow, (1971).
Google Scholar
[14]
R.D. Skeel, M. Berzins, A method for the spatial discretization of parabolic equations in one space variable, SIAM J. Sci. Stat. Comput. 11 (1990) 1–32.
DOI: 10.1137/0911001
Google Scholar
[15]
S. Blanco, R. Vargas, J. Mostany, C. Borrás, B.R. Scharifker, Modeling the growth of nanowire arrays in porous membrane templates, J. Electrochem. Soc. 161 (2014) E3341–E3347.
DOI: 10.1149/2.039408jes
Google Scholar
[16]
D.A. Bograchev, V.M. Volgin, A.D. Davydov, Determination of mass coefficients of ions in a quantitative analysis of the effect of natural convection on electrochemical processes, Russ. J. Electrochem. 41 (2005).
DOI: 10.1007/s11175-005-0202-0
Google Scholar
[17]
V.M. Volgin, D.A. Bograchev, A.D. Davydov, Onset of natural convection of electrolyte on horizontal electrode under non-steady-state mass-transfer conditions, Int. J. Heat Mass Transf. 50 (2007) 2124–2131.
DOI: 10.1016/j.ijheatmasstransfer.2006.11.007
Google Scholar