Numerical Solution Strategies in Permeation Processes

Article Preview

Abstract:

In this work, the strategy for numerical solutions in transport processes is investigated. Permeation problems can be solved analytically or numerically by means of the Finite Difference Method (FDM), while choosing the Euler forward explicit or Euler backwards implicit formalism. The first method is the easiest and most commonly used, while the Euler backwards implicit is not yet well established and needs further development. Hereafter, a possible solution of the Crank-Nicolson algorithm is presented, which makes use of matrix multiplication and inversion, instead of the step-by-step FDM formalism. If one considers the one-dimensional diffusion case, the concentration of the elements can be expressed as a time dependent vector, which also contains the boundary conditions. The numerically stable matrix inversion is performed by the Branch and Bound (B&B) algorithm [2]. Furthermore, the paper will investigate, whether a larger time step can be used for speeding up the simulations. The stability range is investigated by eigenvalue estimation of the Euler forward and Euler backward. In addition, a third solver is considered, referred to as Combined Solver, that is made up of the last two ones. Finally, the Crank-Nicolson solver [9] is investigated. All these results are compared with the analytical solution. The solver stability is analyzed by means of the Steady State Eigenvector (SSEV), a mathematical entity which was developed ad hoc in the present work. In addition, the obtained results will be compared with the analytical solution by Daynes [6,7].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-46

Citation:

Online since:

December 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. von der Weth et al., Numerical analysis of an isovolumetric thermal desorption experiment, Proceeding of Diffusion in Solids and Liquids (DSL) conference, Defect and Diffusion Forum., (Athens, 24.-28.June 2019).

Google Scholar

[2] A. von der Weth et al., Permeation Data Analysis Considering a Nonzero Hydrogen Concentration on the Low Pressure Detector Side for a Purged Permeation Experiment, Defect and Diffusion Forum, 2019, 18-19, Vol 391, https://doi.org/10.4028/www.scientific.net/DDF.391.18.

DOI: 10.4028/www.scientific.net/ddf.391.18

Google Scholar

[3] L. A. Sedano et al., Intrinsic hydrogen transport constants in the CFC matrix and fibres derived from isovolumetric desorption experiments, Journal of Nuclear Materials 273 (1999) 285±293.

DOI: 10.1016/s0022-3115(99)00055-0

Google Scholar

[4] K. Nagatou, M. R. Schulz et al, ANALYTICAL SOLUTION OF A GAS RELEASE PROBLEM CONSIDERING PERMEATION WITH TIME DEPENDENT BOUNDARY CONDITIONS, ICTT (2019).

Google Scholar

[5] bwUniCluster, https://www.scc.kit.edu/dienste/bwUniCluster.php.

Google Scholar

[6] H. A. Daynes, The Process of Diffusion through a Rubber Membrane, Proc. Roy. Soc. (1920) A97, 286.

Google Scholar

[7] J. Crank, The Mathematics of diffusion, Oxford 19752.

Google Scholar

[8] H. R. Schwarz, Numerische Mathematik. Stuttgart (1983).

Google Scholar

[9] Smith, Numerical Solution of Partial Differential Equation, London (1965).

Google Scholar

[10] J. Ulm, Numerisch Lösung gewöhnlicher und partieller Differentialgleichungen, Renningen, (2018).

Google Scholar

[11] R. M. Barer, Diffusion In And Through Solids, Cambridge (1941).

Google Scholar

[12] W. Jost, Diffusion, Darmstadt, (1957).

Google Scholar

[13] H. R. Schwarz, Numerische Mathematik. Stuttgart 20097.

Google Scholar

[14] W. Dahmen, A. Reusken, Numerik für Ingenieure und Wissenschaftler, Berlin 20082.

Google Scholar

[15] W. G. Bickley, R.S.H.G. Thomson, Matrices Their Meaning and Manipulation London (1964).

Google Scholar

[16] T. Glage et al., On the Analytical Inversion of Solver Matrices used in num ericalApproximations for the Diffusion Equation, this conference.

Google Scholar

[17] J. Akoka, Rounded [i. E. Bounded] branch and bound methode for mixed integer nonlinear preogramming problems, Masssachusettes Cambridge 1977 (reprint of a work from 1923).

Google Scholar

[18] J. S. Wentzel, Elemente der dynamischen Optimierung, Moskau (1964).

Google Scholar

[19] F. Weinberg, Branch and Bound: Eine Einführung, Berlin (1973).

Google Scholar

[20] D. W. Marqardt et al. Least Squares Analysis of Electron Paramagnetic Resonance Spectra, Jornal of Molecular Spectroscopy 7, 269-279 (1961).

DOI: 10.1016/0022-2852(61)90360-5

Google Scholar

[21] W. Hackbusch, Iterative Lösung großer schwachbesetzter Gleichungssysteme, Stuttgart (1993).

DOI: 10.1007/978-3-663-05633-1

Google Scholar

[22] H. Wegener, Der Mössbauereffekt, Mannheim 1964².

Google Scholar

[23] C. Reuter, Mößbauerspektroskopie an Eisen-Terbium-Schichten, Regensburg (1990).

Google Scholar

[24] A. von der Weth, Berechnung statischer axialsymmetrischer Magnetfelder mit der Methode der Randelemente unter Berücksichtgug nichtlinearer Materisleigenschaften, pp.108-112, Frankfurt (1997).

Google Scholar

[25] https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm.

Google Scholar